
Sequence-to-sequence (encoder–decoder) networks
Statistical Methods in NLP 2

ISCL-BA-08

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Summer Semester 2025

version: 276006a @2025-07-02



Self attention and Transformers

• RNNs have been the primary architecture for modeling sequences. However,
– RNNs condition only on preceding input
– RNNs are inherently sequential – difficult to parallelize

• Transformers are designed to resolve these problems
• They use rely mainly on a form of attention, called self attention

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 1 / 19



Transformer architecture

• An encoder–decoder architecture only using
self attention

• The encoder is a stack of blocs consisting of
self attention followed by a feed-forward
layer

• The decoder is similar but,
– Future input is ‘masked’
– Besides self attention, it also attends to the

encoder states
• Both encoder and decoder are stacked
• Both of them use ‘multi-head’ attention

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 2 / 19



Sequence-to-sequence RNN with attention

x0 x1 x2

e0 e1 e3

a1,0 a1,1 a1,2

key

<s> y0 y1 y2

d0 d1 d2 d3

d10 d11 d12 d13

y0 y1 y2 </s>

que
ry

c1
value

ci =
∑

j ai,jej

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 3 / 19



Sequence-to-sequence RNN with attention

x0 x1 x2

e0 e1 e3

a1,0 a1,1 a1,2

key

<s> y0 y1 y2

d0 d1 d2 d3

d10 d11 d12 d13

y0 y1 y2 </s>

que
ry

c1
value

ci =
∑

j ai,jej

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 3 / 19



First step towards Transformers
What if we drop the recursion?

x0 x1 x2

e0 e1 e3

a1,0 a1,1 a1,2

key

<s> y0 y1 y2

d0 d1 d2 d3

d10 d11 d12 d13

y0 y1 y2 </s>

que
ry

c1

e
(2)
1

value

ci =
∑

j ai,jej

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 4 / 19



First step towards Transformers
What if we drop the recursion?

x0 x1 x2

e0 e1 e3

a1,0 a1,1 a1,2

key

<s> y0 y1 y2

d0 d1 d2 d3

d10 d11 d12 d13

y0 y1 y2 </s>

que
ry

c1

e
(2)
1

value

ci =
∑

j ai,jej

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 4 / 19



Calculating the context vector

• The context vector is the sum of the encoder states, weighted by attention, ai,j

ci =
∑
j

ai,jej

• Typically the weights are normalized through softmax the result is an attention
distribution

ai,j =
ef(di−1,ej)∑
k e

f(di−1,ek)

• The attention function, f(·) computes the relevance of encoder state ej to the
decoder state di

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 5 / 19



The attention function

• The attention function returns a high value if the encoder state (the key) is
relevant to the decoder state (the query)

• Most commonly, the attention function is a version of dot product between
the query and the key

f(di,ej) = dT
i ej

f(di,ej) = dT
i Waej

f(di,ej) =
dT

i ej√
k

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 6 / 19



Self attention
a simplified first view

x0 y0

x1 y1

x2 y2

x3 y3

x4 y4

yi =
∑

jwijxj

• The outputs are weighted sum of the inputs
• The weights here depend on the inputs xi
• The general idea is to assign higher weights

to inputs that act together in predicting the
output

• Similar to convolution, but we are looking at
the whole input range

• No recurrence
• The output is permutation invariant (order

of the inputs is not important)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 7 / 19



Simplified self attention

aij =
exi·xj∑
k e

xi·xk
yi =

∑
j

aijxj

• Dot product weights the input inputs with high similarity
• We do not necessarily want similarity

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 8 / 19



Simplified self attention

aij =
exi·xj∑
k e

xi·xk
yi =

∑
j

aijxj

• Dot product weights the input inputs with high similarity
• We do not necessarily want similarity

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 8 / 19



An example

river bank

self attention

• We want representation of
‘bank’ to attend to ‘river’

• But their embeddings are
not likely to be similar

• Dot product by itself is not
useful

• Note also the similarity with
convolutions, but with
unbounded distance

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 9 / 19



Self attention
typical approach

• Each input is transformed to three different vectors
ki = Wkxi (key)
qi = Wqxi (query)
vi = Wvxi (value)

• The transformations (Wk, Wq, Wv) are learned
• The attention function becomes

softmax
(
q · k√

d

)
v

• This can be computed efficiently, and in parallel

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 10 / 19



Multi-head attention

• In practical implementation multiple attention functions are learned in
parallel

• conceptually, this learns different type of relations between input units

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 11 / 19



How about information from the sequence?

• Self attention is not sensitive to the order of input elements
• The solution is encode the position information on each embedding
• Two common approaches

– Position encodings: combination of harmonic (cosine, sine) functions with
different periods

– Position embeddings: learned embeddings for each index of the input sequence
• Recent systems also include relative positional embeddings

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 12 / 19



Transformer architecture

• The first layer is an embedding layer: no
information from context information

• Subsequent layers use attention followed by
a non-linear transformation (feed-forward
layer)

• Feed-forward layer is a projection an
up-projection followed by projection back to
input/output dimensions

• Input and output dimensions to each
Transformer block is the same

• Layer normalization is after (sometimes
before) the attention and feed-forward
calculations

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 13 / 19



Transformer architecture: attention

• All queries, keys and values are combined to
matrices

• Instead of individual dot product, matrix
multiplications is used

Attention(Q,K, V) = softmax
(
QKT )√

d

)
V

• On the decoder side, future input is masked
• The result of matrix multiplications are

normalized layerwise

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 14 / 19



Transformer architecture: multihead

• All attention layers are multiplied
• Conceptually, each head learns a different

property of the input to ‘attend to’

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 15 / 19



Feed-forward layer

• The output of the attention module is passed to a feed-forward network
(FFN)

• Typically FFN first applies a non-linear projection to a higher dimension
(typically 4 times its input), and projects it back to the input/output (model)
dimension

• Conceptually,
– attention decides what lower-layer tokens in the sequence to use as input
– the FFN transforms (non-linearly) to a new representation

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 16 / 19



Layer normalization

• Normalization helps keeping activations (and gradients) in a reasonable
range

• This is important for practical reasons: most optimizers work better if
activations do not have extreme values

• Original tranformers uses post-norm: normalization is done after
attention/FFN calculations

• Most recent models use pre-norm
• ‘Layer Norm’ in original Transformers simply calculates the z-socre over the

activations (features)
• A common alternative is RMSNorm
• Another common option is batch-norm: normalize across the batch rather

than feature dimension

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 17 / 19



Attention in decoder

• The decoder has to decode tokens without the knowledge of the true tokens
• The attention on the decoder is ‘masked’, each token can only attend to the

preceding tokens

mask
(
softmax

(
q · k√

d

))
v

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 18 / 19



Some closing notes

• The Transformer architecture is the main architecture used in modern (large)
language models (with minor changes)

• Original Transformer is an encoder–decoder model, used for machine
translation

• Modern language models can be either
– Encoder only
– Encoder-decoder
– Decoder only

• Reading: Jurafsky and Martin (2025, Chapter 9)

Next:
• Transformer language models
• Reading: Jurafsky and Martin (2025, Chapters 10 & 11)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 19 / 19



Some closing notes

• The Transformer architecture is the main architecture used in modern (large)
language models (with minor changes)

• Original Transformer is an encoder–decoder model, used for machine
translation

• Modern language models can be either
– Encoder only
– Encoder-decoder
– Decoder only

• Reading: Jurafsky and Martin (2025, Chapter 9)
Next:

• Transformer language models
• Reading: Jurafsky and Martin (2025, Chapters 10 & 11)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 19 / 19



Additional reading, references, credits

• The diagrams of the Transformer architecture is from the original
Transformers paper (Vaswani et al., 2017)

Jurafsky, Daniel and James H. Martin (2025). Speech and Language Processing: An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition with Language Models. 3rd. Online manuscript released January 12, 2025. URL:
https://web.stanford.edu/~jurafsky/slp3/.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin (2017).
“Attention is all you need”. In: Advances in neural information processing systems 30.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 A.1

https://web.stanford.edu/~jurafsky/slp3/

	Sequence-to-sequence (encoder–decoder) networks
	Self attention and Transformers
	Transformer architecture
	Sequence-to-sequence RNN with attention
	Sequence-to-sequence RNN with attention
	First step towards Transformers
	First step towards Transformers
	Calculating the context vector
	The attention function
	Self attention
	Simplified self attention
	Simplified self attention
	An example
	Self attention
	Multi-head attention
	How about information from the sequence?
	Transformer architecture
	Transformer architecture: attention
	Transformer architecture: multihead
	Feed-forward layer
	Layer normalization
	Attention in decoder
	Some closing notes
	Some closing notes


	Appendix
	Additional reading, references, credits


