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Self attention and Transformers

• RNNs have been the primary architecture for modeling sequences. However,
– RNNs condition only on preceding input
– RNNs are inherently sequential – difficult to parallelize

• Transformers are designed to resolve these problems
• They use rely mainly on a form of attention, called self attention
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Transformer architecture

• An encoder–decoder architecture only using
self attention

• The encoder is a stack of blocs consisting of
self attention followed by a feed-forward
layer

• The decoder is similar but,
– Future input is ‘masked’
– Besides self attention, it also attends to the

encoder states
• Both encoder and decoder are stacked
• Both of them use ‘multi-head’ attention
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Sequence-to-sequence RNN with attention
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First step towards Transformers
What if we drop the recursion?
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Calculating the context vector

• The context vector is the sum of the encoder states, weighted by attention, ai,j

ci =
∑
j

ai,jej

• Typically the weights are normalized through softmax the result is an attention
distribution

ai,j =
ef(di−1,ej)∑
k e

f(di−1,ek)

• The attention function, f(·) computes the relevance of encoder state ej to the
decoder state di
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The attention function

• The attention function returns a high value if the encoder state (the key) is
relevant to the decoder state (the query)

• Most commonly, the attention function is a version of dot product between
the query and the key

f(di,ej) = dT
i ej

f(di,ej) = dT
i Waej

f(di,ej) =
dT

i ej√
k
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Self attention
a simplified first view
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• The outputs are weighted sum of the inputs
• The weights here depend on the inputs xi
• The general idea is to assign higher weights

to inputs that act together in predicting the
output

• Similar to convolution, but we are looking at
the whole input range

• No recurrence
• The output is permutation invariant (order

of the inputs is not important)
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Simplified self attention

aij =
exi·xj∑
k e

xi·xk
yi =

∑
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aijxj

• Dot product weights the input inputs with high similarity
• We do not necessarily want similarity
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An example

river bank

self attention

• We want representation of
‘bank’ to attend to ‘river’

• But their embeddings are
not likely to be similar

• Dot product by itself is not
useful

• Note also the similarity with
convolutions, but with
unbounded distance
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Self attention
typical approach

• Each input is transformed to three different vectors
ki = Wkxi (key)
qi = Wqxi (query)
vi = Wvxi (value)

• The transformations (Wk, Wq, Wv) are learned
• The attention function becomes

softmax
(
q · k√

d

)
v

• This can be computed efficiently, and in parallel
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Multi-head attention

• In practical implementation multiple attention functions are learned in
parallel

• conceptually, this learns different type of relations between input units
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How about information from the sequence?

• Self attention is not sensitive to the order of input elements
• The solution is encode the position information on each embedding
• Two common approaches

– Position encodings: combination of harmonic (cosine, sine) functions with
different periods

– Position embeddings: learned embeddings for each index of the input sequence
• Recent systems also include relative positional embeddings
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Transformer architecture

• The first layer is an embedding layer: no
information from context information

• Subsequent layers use attention followed by
a non-linear transformation (feed-forward
layer)

• Feed-forward layer is a projection an
up-projection followed by projection back to
input/output dimensions

• Input and output dimensions to each
Transformer block is the same

• Layer normalization is after (sometimes
before) the attention and feed-forward
calculations
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Transformer architecture: attention

• All queries, keys and values are combined to
matrices

• Instead of individual dot product, matrix
multiplications is used

Attention(Q,K, V) = softmax
(
QKT )√

d

)
V

• On the decoder side, future input is masked
• The result of matrix multiplications are

normalized layerwise
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Transformer architecture: multihead

• All attention layers are multiplied
• Conceptually, each head learns a different

property of the input to ‘attend to’
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Feed-forward layer

• The output of the attention module is passed to a feed-forward network
(FFN)

• Typically FFN first applies a non-linear projection to a higher dimension
(typically 4 times its input), and projects it back to the input/output (model)
dimension

• Conceptually,
– attention decides what lower-layer tokens in the sequence to use as input
– the FFN transforms (non-linearly) to a new representation

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 16 / 19



Layer normalization

• Normalization helps keeping activations (and gradients) in a reasonable
range

• This is important for practical reasons: most optimizers work better if
activations do not have extreme values

• Original tranformers uses post-norm: normalization is done after
attention/FFN calculations

• Most recent models use pre-norm
• ‘Layer Norm’ in original Transformers simply calculates the z-socre over the

activations (features)
• A common alternative is RMSNorm
• Another common option is batch-norm: normalize across the batch rather

than feature dimension
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Attention in decoder

• The decoder has to decode tokens without the knowledge of the true tokens
• The attention on the decoder is ‘masked’, each token can only attend to the

preceding tokens

mask
(
softmax

(
q · k√

d

))
v
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Some closing notes

• The Transformer architecture is the main architecture used in modern (large)
language models (with minor changes)

• Original Transformer is an encoder–decoder model, used for machine
translation

• Modern language models can be either
– Encoder only
– Encoder-decoder
– Decoder only

• Reading: Jurafsky and Martin (2025, Chapter 9)

Next:
• Transformer language models
• Reading: Jurafsky and Martin (2025, Chapters 10 & 11)
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Additional reading, references, credits

• The diagrams of the Transformer architecture is from the original
Transformers paper (Vaswani et al., 2017)

Jurafsky, Daniel and James H. Martin (2025). Speech and Language Processing: An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition with Language Models. 3rd. Online manuscript released January 12, 2025. URL:
https://web.stanford.edu/~jurafsky/slp3/.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin (2017).
“Attention is all you need”. In: Advances in neural information processing systems 30.
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