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Some (typical) machine learning applications
x (input) y (output)
Spamdetoction _document_ spam or not
Sentimentanalysis  product review  sentiment
Medical dingnosis  patientdata  dingnosis
Creditscoring_ financial history _loan decision

t-output) pairs are assumed to be
independent and denticaly distributed (11.0.).

Structured prediction

In many applications, the L..d. assumption is wrong,

X (input) y (output)
POS tagging wword sequence POS sequence
Parsing wond sequence parse tree
ocr image (array of pxels)  sequences of leters

Gene prediction genome. genes

Structured /sequence learning is prevalent in NLP.

Sequence learning - a demonstration of the problem

The

ly (local) predicti '

+ Individual predictions depend on each other
+ Can we treat the whole sequence as a single label?

Recap: chain rule

We rewri i ibability as
PIX,Y) = PIX| V)P(Y)
We can also write the same quantity as,
PIX,Y) = PY[XIP(X]
In general, for any number of random variables, we can write
PUX1, Xz X ) = PIX1 X2 X (X2, X )

Recap: (conditional) independence

If two variables X and Y are independent,

PIX|Y)=P(X) and PIX,Y)=PX)P(Y)

Xand Y variable Z,

PIX,Y|Z) = P(X| 2)P(Y|Z)

An example: probability of a sentence

P(The old man the boats)

. the
sentence,and dividing i t th total number o senenees in English

Markov chains
calulating probablites

Given a sequence of events (or sates), 41,2, e,
« Ina firstonder Markov chain, the probability of an event q, is

Plqulan,.. qu-1) = Pladac )
- Wec: P of the
words. Using chain rale oI 3 history is extended, e.g,
second-order Markov chain:
PIS) = Plboats| The old man theP(The old man the)
(boats  The old man the)P(the | The old man)P(The old) Plaelde, - Gr-1) = Plarlae2,de1)
— Plboats | The old man the)P{the | The old man]P(man | The old)P(old | TheP(The)
. P
distributions
- Did we solve the problem of probability estimation?

Markov chains
definiion

A Markov model is defined by,
« Asetof states Q = (g1,
« A special start state qo
« A transition probability matrix

Ll

Back to sentence probability example

« With a first-order Markov assumption,

P(S) = Plboats | The old man theP(The old man the)
(boats| the]P(the | man| P(man |old P(old  TheP(The)

@ agz ... aon
an an -.oam where ay; s the probability of transi- e S S

tion from state {0 state | 3 that we will get
Gni Gnz oo Gnn back«msry soon

Hidden/latent variables

« In many machine learning problems we want to account for
unnb:crvmlunnbeumbln latent or hidden variables
+ Some examples
~ ‘pers muhly inmany psychological data
= “topic ofa text
~ “socio-ccanomic class’ of a speaker
S e et o s o ey
\latent

difficult

Learning with hidden variables
Aninformall quick imodcton o the EM agoritn

« The EM algorithm s used in many

with latent/hidden variables
1. Randomly mma]us the LD
2. Iterate until cor

i compute ko of he dta, e heparametrs
o e e e




Hidden Markov models (HMM) Example: HMMs for POS tagging

+ HMMs are like Markov chains: probability of a state depends only a limited
history of previous states

Plaeldn,e o) = Placlae 1) S
+ Unlike Marko chains,sate sequence i hidden, they are ot the observations e M e m o
+ Atevery state 4, an HMM enits an output, o, whose probability depends
only on the associated hidden state + The tags are hidden

= « Probability of a tag depends on the previous tag.

+ Given e
sequence 0 =o1,-..,07, « Probability ofa word ata given tate depends only on the current ag

TIPtadac | TTPlodan)

P(0,q) = plar)

HMMs: formal definition A simple example
An HMM is defined by
+ Asetof states Q = {qu,-..,qn} « Three states: N, V, D

+ The set of possible observations O = (o1, 1)

+ Four possible observations: a,b, ¢ &
« A transition probability matrix

Voo
an iz e aan Wy
POl 1|y is the probability of transition 02 07 o N 01 01 05 a
- from state g tostate 4 aclos o7 oily mofoa o5 o1fv
e o 04 03 01| <
os o1 o1l o
+ Initial probability distrbution 7 = (P(q1),..., P(an ]} i CAEESIE
+ Probabilty disributions of
NPz e P e the probability of emitting (k)
output o a state a5
bmi bmz bmn, o i
Unfolding the states
M st o )
@ @ o or
HMMs: three problems Assigning probabilities to observation sequences
Recogrition/decoding
c
= PlolM) = Y Plo,qIM)
Plqlo;M) a
Evaluation + We need to sumn over an exponential nusber of hidden tae sequences
Calcating likelihood of a given sequence « Thesolution s ueing a dynamic programiming algorithra
ro = forcach e ofthe e, tre frcud rbaiis
Learning = 3 Pl i)
Given observation sequences et ofstaes, and (sometimes) ;

corresponding state sequences, estimate the parameters (A, B) of
HMM

Assigning probabilities to observation sequen
the forward algorithm
« Start with calculating all forward probabilities for t = 1

Forward algorithm

ar=mPlorlas) for 1 <i<IQl

store the & values

«Fort>1,
o
=) i 1Plailay)Plodq) forl<i<iQl2<t<n
+ Likelihood is the sum the
st step

@l 1,1 = b
PloM)= Y an;
,; @22 = aanvbyy + 12avvbyy + @aDvbyy

Determining best sequence of latent variables HMM decoding problem
Decoding
a b« 4

. Know
sequence, P(q0;M)
= For exampl

find the most likel
+ The problem  the I y
forward algorithm
+ Two major differences
5 kelihood
- thep Tead likelihood




Learning the parameters of an HMM

+ We want to estimate 7, A, B
« If we have both
sequence, MLE estimate is

oand

Clao = ai)

by =

Learning the parameters of an HMM

+ Given a training set with observation sequence(s) o and state sequence q, we
want to find 0 )

argmaxP(o|,8)
o

* Typilysolved using EM
1 Initializ
2 Fpea antl convergence
Fstep. given O, estimatethe hidden stae sequence
Mot v the stimated hidden sats, use ‘expected countsto update 0
EM algorithm is called

Ty Clas o o foraard-backwand algorithm
HMM variations Directed graphical models: a brief divergence
+ Wesaw p
« The HMMs we discussed so far are called ergodic HMMs: all ay; are non-zero e ]
+ For some applications, it s common to use HMMs with additional restrictions )= PP 8IPC ) = Pl U8 1P ) = PP 2P .5
+ Awell known variant (Bakis HM) allows only forward transitions  Grephicat s dislay this relations n raphe,
~ viabls sre dentoc by
@ @  the dependencebetweeh te variables are indicaed by edges
<= + Bayesian networks re directed acyclic graphs
. e, plglo] canb 1
distribution
+ A variable (node) depends anly on s parents

Graphical models

+ Graphical models define models involving multiple random variables
. ltis p:
equations) to work with graphical models

+ Ina graphical model, by convention, the observed variables are shaded
« Graphs can hich are also called

HMM as a graphical model

@

MaxEnt HMMs (MEMM)

« In HMMs, we model P(q,0) = P(q)P(o )
+ In many applications, we are only interested in P(q | o], which we can
calculate using the Bayes theorem

MEMM:s as graphical models
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+ But e can also model Plq | o] directly model
1. We can also have other dependencies as features,for example
Plaulge v,u‘lfic s
T, are features - can be any useful feature @
7 normalize the probabity disribution

Conditional random fields

@—O—G—O—® @)
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+ A related model used in NLP is conditional random field (CRF)
« CRFs are undirected models

+ CRFs also model P(q | o) directly

Plalo

i
2@ nadstase)

criminative models

+ HMM:

models, they m

- you can generate the output using HMMs.

+ MEMMs and CI
probability directly

« Itis easier to add arbitrary features on discriminative models

« In general: HMMs work well when the state sequence, P(q), can be modeled
well

model

Summary Additional reading, references, credits
+ Inmany problems, ., POS tagsing, i.c. assumption is wrong
+ We need model the effcts of the seq
general i the data
+ FIMMs are generative sequence models:
ko amunpton e e dn s (P . .
~ Observations (words) are conditioned on the state (tag) s o '.““m.mm e A s G

« There are other sequence learning methods
- Briefly mentioned: MEMM, CRF
- Coming soon: recurrent neural netsvorks
« Reading: Jurafsky and Martin (2025, Chapter 17)
Next
« Recurrent and convolutional networks
« Reading; Jurafsky and Martin (2025, Chapter 8)



https://web.stanford.edu/~jurafsky/slp3/
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