Deep neural networks
Recurrent and convolutional networks o
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+ Decp neural netsworks hav recently been
Gagn Galtekin successful in many fasks
ceoltekindats.uni-tuebingen.de « They often use sparse connectivity and
e — shared weights
S o i

architectures: recurrent and convolutional

« We willfocus on two important
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Why deep networks? Why now?
+ We saw thata feed-forward network with a single hidden layer s  uicersal o T P A G R T
apprasinator unit (GPU) hardware
+ However, this i a theoretica resul it s ot clear how many units one may + Availability oflarge amounts of dat
need for the approximation = mainly unlabeled data (more on ths lter)

~ but alo labeled data through crowd sourcing’ and other sources.

+ Some new developments in theory and applications

« Successive layers may learn different representations
« Deeper architectures have been found to be useful in many tasks

Recurrent neural networks. Recurrent neural networks

« Feed forward networks
~ can only learn assaciations
- donot have memory of earlier inputs
~ if uscd for sequences, learning strongly depends on location of items.
« Recurrent neural networks model sequences
« This is achieved by ‘recurrent’ connections in the network o k I feed-forward networks.

« They include loops that use previous output (of the hidden layers) as well as
input

+ Forward

A simple version: SRNs Processing sequences with RNNs

Elman (19%)

 RNNs proces sequencesane it at e
« The crlir inputsafec the output throughrecurrent links
 The network keeps previous idden
states (context units)

[ Fidden wnits « The rest s just like a eed-forward
¢ network
|  Toing s smple, but cann s

[Context units nput

Learning in recurrent networks Unrolling a recurrent network
Back propagatio through time (BPTT)

 We need to learn three sels of weights: W, W; and
W
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T - Theman iy s n progaing e i T
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through the recurrent connecti
& X0 il i1 it

Note: the weights with the same color are shared.

Unstable gradients RNN architectures

Many-to-many (o5, POS tagging)

+ A commonproblen ndeep networks s unlble gadents

using (he chain rule -
S e e —her]
+ A practical soution forexploingsradiens i clld et clpping T i T




RNN architectures

Many-to-ane e, document classification

RNN architectures

Many-t-many witha delay (., machine tran

s
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Bidirectional RNNs

Backward states

Forward states

Unstable gradients revisited

« Wenoted earlir that the gradients may oanish or explode during

backpropagation in deep network

« This s spolly problematc for RN
can be extremely la

« Athough RN can thoreialy Jean ong distance dependencie i
affcted by unstable gradients proble

ince the effective dept of the network

. istouseg

« Most modern RNN architectures are ‘gated”
« The main idea is learning a mask that controls what to remember (or forget)
from previous hidden layers
* Two populararhictuesare
~ Long shortter y (LSTM) networks (sbove)
~ Gated ecursent unis (CRU)

Convolutional networks

I network:
applications
+ They have also been used with success some NLP tasks
« Unlike feed-forward networks we have discussed o far,
~ CNNs are ot ully connected.

P: Pop! P 3

Some weights are shared

+ A CNN learns features that are location iroariant

+ CNNs are also computationally less expensive compared to fully connected
networks

Convolution in image processing Example convolutions
+ Convolution s i P like edge

detection, blurring, sharpening,
« The idea i to transform each pixel with a function of the local neighborhood
Input (%)

Fiter (W) Output (V)

y=Y

« Blurring

+ Edge detection

Learning convolutions

. (e, of images,
or sentences)

« In machine learning we want to e the convolutions
« Typically, we learn h resulting

“R

ted Il level features

« The last layer is typically a standard fully-connected classifier

+ Each hidden unit corresponds to a local window in the input

pe of features

Pooling

Po
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« Convolution s combined with pooling

£

« Pooling ‘ayer’ simply calculates a statistic (., max) over the convolution
layer
« Location invariance comes from pooling

Pooling and location invariance

Max pooling,
Comvolution

/YW

+ Note that the numbers at the pooling layer are stable in comparison to the
convolution layer




Padding in CNNs CNNs: the bigger picture

classifier output

—

+ With successive layers of
convolution and pooling, the
later layers shrink

+ One way to avoid this is padding
the input and hidden layers
with enough number of zeros

« Ateach convolution /pooling step, we often
want to learn multip P

+ Aftera (long) chain of hierarchica feature —
maps, the final layer s typically gy
h 1 o

Real-world examples are complex CNNs in natural language processing
« The use of CNNs in image applications i rather intutive
ot

= the first convolutional lyerleans ol fatar
I\ / —

- these
Teatures
o< W
The real-world CNNStend to be complex + InNLE itis a bitessstraight-forward
+ Many laers (sometimes with repeiton) ~ CNNsare typcaly used incombination with o vectors
+ Large amount of branching -
- grams’ s features

Some (important) architectures we did not cover (yet)

Claster
 Itis common to use RNN (and other netuworks)in combination with atfention
Features. er o
Paling « Transformers Iy mainly on attention mech
z s coupleofyears, .
Feature maps they can be trained on large amounts of data in parallel (using many GPUS)
Convoltion
Word vctrs
Ioput not really worth seeing
Summary References & further reading

RN models of sequences with (short term) memory
NN shared foed-forward weights, location invariance

+ Rending Jreky s Mt (425, Craptes §) B Jurafky, Daiel and James H. Martin (2025). Spechand Linguage Processing:

An Introduction to Natural Language Processing, Computational Linguistics, and
with Language Models. 3rd. Online manuscript released
Ukt Bttps://veb. stanford. edu/- Juratsky/s1p3/

Next: Speech Recogs
« Unsupervised learning January 12,



https://web.stanford.edu/~jurafsky/slp3/
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