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Introduction Matrix factorization Predictive (neural) embeddings Wrapping up

Representations of linguistic units

• The success of NLP methods depend on how we represent the objects of
interest, such as

– words, morphemes
– sentences, phrases
– letters, phonemes
– documents
– speakers, authors
– …

• The way we represent these objects interacts with the ML methods used for
the task

• We will mostly talk about word representations
– They are also applicable any of the above and more
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Symbolic (one-hot) representations

cat = (0, . . . , 1, 0, 0, . . . , 0)

dog = (0, . . . , 0, 1, 0, . . . , 0)

book = (0, . . . , 0, 0, 1, . . . , 0)

. . . x

y

z

cat

dog

book
Problems with one-hot representations

• No notion of similarity
• Large and sparse vectors
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More useful vector representations: embeddings

• The idea is to represent similar words with similar vectors
cat = (0, 3, 1, . . . , 4)

dog = (0, 3, 0, . . . , 3)

book = (4, 1, 4, . . . , 5)

. . . x

y

z

dog cat

book
• The similarity between the vectors may represent similarities based on

– syntactic
– semantic
– topical
– … features useful in a particular task
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Where do the vector representations come from?

• The vectors are (almost certainly) learned from data
• Typically using an unsupervised (or self-supervised) method
• The idea goes back to,

You shall know a word by the company it keeps. —Firth (1957)

• In practice, we make use of the contexts (company) of the words to determine
their representations

• Words that appear in similar contexts are mapped to similar representations
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How do we learn word vectors?

c1 c2 c3 . . . cm


w1 0 3 1 . . . 4

w2 0 3 0 . . . 3

w3 4 1 4 . . . 5

. . .

• Counting/weighting based on context already allows us to learn similarities
between words

• But these vectors are large and sparse
• Dense vectors have a number of desirable properties

– More efficient to process
– Removed redundancy also means better generalizations
– Less sensitive to noise

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 5 / 30

Introduction Matrix factorization Predictive (neural) embeddings Wrapping up

How to calculate dense word vectors?
(1) count, factorize, truncate

c1 c2 c3 . . . cm


w1 0 3 1 . . . 4

w2 0 3 0 . . . 3

w3 4 1 4 . . . 5

. . .

=

z1 z2 z3 . . . zm


w1 1 5 9 . . . 4

w2 1 4 1 . . . 3

w3 9 1 1 . . . 5

. . .




σ1 . . . 0
... . . . ...
0 . . . σm

c1 c2 c3 . . . cm


0 3 1 . . . 4 u1

0 3 0 . . . 3 u2

9 1 8 . . . 0 u3

. . .
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How to calculate word vectors?
(2) latent variable models (e.g., LDA)

α θ Z W

β ϕ

D
N

K

• Assume that the each ‘document’ is generated based on a mixture of latent
variables

• Learn the probability distributions
• Typically used for topic modeling (θ)
• Can model words too (ϕ)
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How to calculate word vectors?
(3) predict the context from the word, or word from the context

• The task is predicting
– the context of the word from the

word itself
– or the word from its context

• Task itself is not (necessarily)
interesting

• We are interested in the hidden layer
representations learned

word
dense repr.

context
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Applications of word vectors: similarity and analogy

• It was shown that the vector space models outperform humans in
– TOEFL synonym questions

Receptors for the sense of smell are located at the top of the nasal cavity.
A. upper end B. inner edge C. mouth D. division

– SAT analogy questions
Paltry is to significance as is to .

A. redundant : discussion
B. austere : landscape
C. opulent : wealth
D. oblique : familiarity
E. banal : originality
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Vector arithmetic with embeddings

Word vectors map some
syntactic/semantic relations to vector
operations

• Paris - France + Italy = Rome
• king - man + woman = queen

• ducks - duck + mouse = mice

Paris

France

Rome

Italy
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Singular Value Decomposition (SVD)
a very short introduction

• Singular value decomposition is a well-known method in linear algebra
• An n×m (n terms m documents) term-document matrix X can be

decomposed as
X = UΣVT

U is a n× r unitary matrix, where r is the rank of X (r ⩽ min(n,m)). Columns of
U are the eigenvectors of XXT

Σ is a r× r diagonal matrix of singular values (square root of eigenvalues of XXT

and XTX)
VT is a r×m unitary matrix. Columns of V are the eigenvectors of XTX
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Truncated SVD

X = UΣVT

• Using eigenvectors (from U and V) that correspond to k largest singular
values (k < r), allows reducing dimensionality of the data with minimum loss

• The approximation,
X̂ = UkΣkVk

results in the best approximation of X, such that ∥X̂− X∥F is minimum
• Note that r and n may easily be millions (of words or contexts), while we

choose k much smaller (a few hundreds)
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Truncated SVD: with a picture

w
or

ds

contexts

= × ×

word vectors context vectors

Step 1 Get word-context associations
Step 2 Decompose
Step 3 Truncate
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More notes on word vectors from SVD

w
or

ds

contexts

X

=

= U

×

× Σ

×

× VT

word vectors context vectors

U = XVΣ−1

• Each component of a ‘reduced’ word vector is a weighted sum of the original
word vector

• SVD removes correlations, resulting in less redundancy
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SVD: LSI/LSA

SVD applied to term-document matrices are called
• Latent semantic analysis (LSA) if the aim is constructing term vectors

– Semantically similar words are closer to each other in the vector space
• Latent semantic indexing (LSI) if the aim is constructing document vectors

– Topically related documents are closer to each other in the vector space
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SVD based vectors: practical concerns

• In practice, instead of raw counts of terms within contexts, the
term-document matrices typically contain

– pointwise mutual information
– tf-idf

• If the aim is finding latent semantic/topical dimensions, frequent/syntactic
words (stopwords) are often removed

• Depending on the measure used, it may also be important to normalize for
the document length
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Matrix factorization: summary

+ Matrix factorization methods were around for a long time: they are well
studied and well known

+ These methods are effective: guaranteed optimality / convergence
- The methods do not scale well for large data sets
± The mappings are linear

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 17 / 30

Introduction Matrix factorization Predictive (neural) embeddings Wrapping up

Predictive models

0

0

0

0

h1

0

0

h2

0

1

h3

1

0

fast

car • The idea is the ‘locally’ predict the context a
particular word occurs

• The hidden layer representations are the dense
vectors we are interested

• Conceptually, the hidden dimensions encode
properties of the word

• Typically we use larger contexts
• Deeper networks may be used for non-linear

mappings
• For this lecture, we are interested in static embeddings. We will discuss
contextual representations later
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Predictive models
common approaches

• Instead of dimensionality reduction through SVD, we try to predict
– either the target word from the context
– or the context given the target word

• In practice ‘shallow’ methods are shown to be effective
• Typically,

– We assign each word to a fixed-size random vector
– We use a standard ML model and try to reduce the prediction error with a

method like gradient descent
– During learning, the algorithm optimizes the vectors as well as the model

parameters
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word2vec

• word2vec is a popular algorithm and open source application for training
word vectors

• It has two modes of operation
CBOW or continuous bag of words predict the word using a window around the word

Skip-gram does the reverse, it predicts the words in the context of the target word using the
target word as the predictor
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word2vec
CBOW and skip-gram modes – conceptually

w−2

w−1

w1

w2

w

context

embedding target word

CBOW

w

w−2

w−1

w1

w2

context

embeddingtarget word

Skip-gram
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word2vec
a bit more in detail

• For each word w, the algorithm learns two sets of embeddings
vw for words
cw for contexts

• Objective of the learning is to maximize (skip-gram)

P(c |w) =
evw·cc∑

c ′∈c e
cc ′vw

Note that the above is simply softmax – the learning method is equivalent to
logistic regression, but we have additional parameters (c) to estimate

• Now, we can use gradient-based approaches to find word and context vectors
that maximize this objective
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Issues with softmax

P(c |w) =
evw·cc∑

c ′∈c e
cc ′vw

• A particular problem with models with a softmax output is high
computational cost:

– For each instance in the training data denominator has to be calculated over the
whole vocabulary (can easily be millions)

• Two workarounds exist:
– Negative sampling: a limited number of negative examples (sampled from the

corpus) are used to calculate the denominator
– Hierarchical softmax: turn output layer to a binary tree, where probability of a

word equals to the probability of the path followed to find the word
• Both methods are applicable during training, during prediction, we still need

to compute the full softmax
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word2vec: some notes

• Note that word2vec is not ‘deep’
• word2vec preforms well, and it is much faster than earlier (more complex)

ANN architectures developed for this task
• The resulting vectors used by many (deep) ANN models, but they can also be

used by other ’traditional’ methods
• word2vec treats the context as a BoW, hence vectors capture (mainly)

semantic relationships
• We need to keep the vocabulary (relatively) small, the method does not help

with out-of-vocabulary words
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Other predictive methods for building vector representations

• There a few other popular methods for building ‘general purpose’ vector
representations

– GloVe tries to combine local information (similar to word2vec) with global
information (similar to SVD)

– FastText makes use of characters (n-grams) within the word as well as their
context

• One can also train embeddings for a particular task/application, by plugging
an ‘embedding layer’ to any neural network
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Using vector representations

• Dense vector representations are useful for many ML methods
• They are particularly suitable as input to neural network models
• The embeddings alone can be used in many applications that require

measuring similarities between words
• Dense vector representations are not specific to words, they can be obtained

and used for any (linguistic) object of interest
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Context matters

In SVD (and other) vector representations, the choice of context matters
• Larger contexts tend to find semantic/topical relationships
• Smaller (also order-sensitive) contexts tend to find syntactic generalizations
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Evaluating vector representations

• Like other unsupervised methods, there are no ‘correct’ labels
• Evaluation can be

Intrinsic based on success on finding analogy/synonymy
Extrinsic based on whether they improve a particular task (e.g., parsing, sentiment

analysis)
– Correlation with human judgments
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Differences of the methods
…or the lack thereof

• It is often claimed, after excitement created by word2vec, that
prediction-based models work better

• Careful analyses suggest, however, that word2vec can be seen as an
approximation to a special case of SVD

• Performance differences seem to boil down to how well the hyperparameters
are optimized

• In practice, the computational requirements are probably the biggest
difference
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Summary
• (Dense) vector representations of linguistic units allow calculating

similarity/difference between the units
• General purpose embeddings can be ‘trained’ using counting (SVD), or

predicting (word2vec, GloVe)
• They are particularly suitable for ANNs as low-dimensional inputs
• Although these general purpose embeddings are useful,

– they typically do not distinguish some important properties (e.g., they assign
similar vectors to antonyms)

– they do not handle polysemy, meaning in context
• Embeddings can also be trained on a particular task
• Also works for other linguistic objects (e.g., letters, sentences)
• Reading: Jurafsky and Martin (2025, Chapter 6)

Next:
• Gradient descent, Reading: Jurafsky and Martin (2025, Section 5.6)
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Some sources of information

• Jurafsky and Martin (Chapter 6, 2025)

Jurafsky, Daniel and James H. Martin (2025). Speech and Language Processing:
An Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition with Language Models. 3rd. Online manuscript released
January 12, 2025. URL: https://web.stanford.edu/~jurafsky/slp3/.
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