Representing linguistic data

Statistical Methods in NLP 2 ISCL-BA-08

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Summer Semester 2025

Representing linguistic data

- Almost all machine learning methods require a fixed number of numeric predictors
- In most NLP task, our predictors are sequences of (categorical) units: letters/phonemes, words, sentences, documents
- Correct representations of these units have direct impact on the success of the ML methods
- We start with some basic methods of representations, and move on to *learning* these representations

Basics: how to represent categorical predictors? binary case

• Representing binary predictors is relatively straightforward

Basics: how to represent categorical predictors? binary case

Representing binary predictors is relatively straightforward

$$x = \begin{cases} 0 & \text{for male} \\ 1 & \text{for female} \end{cases}$$
$$x = \begin{cases} -1 & \text{positive} \\ +1 & \text{negative} \end{cases}$$

- 0 and 1 is the most common choice in practice
- The choice of the numbers is arbitrary, any two real numbers would do
- The order is also arbitrary, but sometimes good to pick a particular order for interpretability

POS tag	code
NOUN	1
VERB	2
ADJ	3
ADV	4
PRON	5

POS tag	code
NOUN	001
VERB	010
ADJ	011
ADV	100
PRON	101

POS tag	code
NOUN	00001
VERB	00010
ADJ	00100
ADV	01000
PRON	10000

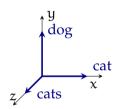
- For categorical variables most common choice is the one-hot (or one-of-k) representation
- One-hot vectors are orthogonal, they do not indicate any (random) similarity or ordering
- Even for ordinal variables, it may often be better to use one-hot vectors
- They cannot represent any similarities between class values
- The vectors may become large if there are many values

POS tag	code
NOUN	00001
VERB	00010
ADJ	00100
ADV	01000
PRON	10000

Problem with one-hot representations

cat =
$$(0, ..., 1, 0, 0, ..., 0)$$

cats = $(0, ..., 0, 1, 0, ..., 0)$
dog = $(0, ..., 0, 0, 1, ..., 0)$
...



- No notion of similarity
- It is particularly bad if the instances are not a closed class (e.g., documents)
- Large (but sparse) vectors

Properties of good representations

- Representations should allow measuring similarity: similar objects should be represented with similar vectors
- Representations should allow making distinctions required for the task
- Representations should be efficient to process
- Representations should be easy to obtain (automatically)

Bag of words (BoW) representation

The idea: use words that occur in text as features without paying attention to their order.

The document

It's a good thing most animated sci-fi movies come from Japan, because "titan a.e." is proof that Hollywood doesn't have a clue how to do it. I don't know what this film is supposed to be about.

BoW representation

how japan good n't I thing film what , proof titan a because . 's know does most hollywood is animated it do sci-fi a.e. " " supposed be come clue to this that from have movies about .

Bag of words representation

with binary features

The document

supposed to be about.

It's a good thing most animated sci-fi movies come from Japan, because "titan a.e." is proof that Hollywood doesn't have a clue how to do it. I don't know what this film is

- If the word is in the document, the value of 1, otherwise 0
- The feature vector contains values for all words in our document collection

feature	value
to	1
do	1
a	1
thing	1
have	1
good	1
be	1
clue	1
great	0
pathetic	0
masterpiece	0

. . .

Bag of words representation

with (document) frequencies

supposed to be about.

The document

It's a good thing most animated sci-fi movies come from
Japan, because "titan a.e." is proof that Hollywood doesn't
have a clue how to do it. I don't know what this film is

- Use frequencies rather than binary vectors
- May help in some cases, but
 - effect of document length
 - frequent is not always good

feature	value
to	2
do	2
a	2
thing	1
have	1
good	1
be	1
clue	1
great	0
pathetic	0
masterpiece	0

..

Bag of words representation

with relative frequencies

The document

It's a good thing most animated sci-fi movies come from Japan, because "titan a.e." is proof that Hollywood doesn't have a clue how to do it. I don't know what this film is supposed to be about.

- Relative frequencies are less sensitive to document length
- Still, high-frequency words dominate

feature	value
to	0.06
do	0.06
a	0.06
thing	0.03
have	0.03
good	0.03
be	0.03
clue	0.03
great	0.00
pathetic	0.00
masterpiece	0.00

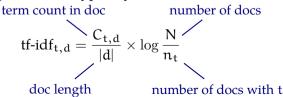
. . .

tf-idf weighting

- Intuition:
 - Words that appear multiple times in a document is important/representative for the document
 - Words that appear in many documents are not specific/useful
- tf-idf uses two components

tf term frequency - frequency of the word in the document idf inverse document frequency - inverse of the ratio of documents that contain the term

• Both components are typically normalized



tf-idf example

Document 1	(d ₁)	
the	5	
good	2	
bad	1	

Docui	ment 2 ((d_2)	
	the a book	2 2 1	

$$tf-idf(t, d) = tf(t, d) \times idf(t)$$

$$tf-idf(good, d_1) = ?$$

$$tf$$
-idf(the, d_1) = ?

$$tf$$
-idf(bad, d_1) = ?

$$tf$$
-idf(good, d_3) = ?

tf-idf example

Document 1	(d_1)	
the	5	
good	2	
bad	1	

$$tf\text{-}idf(t, d) = tf(t, d) \times idf(t)$$

tf-idf(good,
$$d_1$$
) = $\frac{2}{8} \times \log \frac{3}{2} = 0.15$ tf-idf(the, d_1) = $\frac{5}{8} \times \log \frac{3}{3} = 0.00$ tf-idf(bad, d_1) = $\frac{1}{8} \times \log \frac{3}{1} = 0.20$ tf-idf(good, d_3) = $\frac{3}{6} \times \log \frac{3}{2} = 0.29$

Some notes on tf-idf

- tf-idf is an effective method for term weighting
- It was originally used for information retrieval, where it brought substantial improvements over other methods
- It is also very effective on text classification when using linear models
- \bullet There are some alternatives (e.g., BM25), and many variations: frequencies for TF, or use the \log TF
- It has been difficult to improve over it (since 1970's)

Pointwise mutual information

for term weighting

Another common weighting method is pointwise mutual information

$$PMI(t,d) = \log \frac{P(t,d)}{P(t)P(d)}$$

- Besides normalizing for 'term frequency/probability', PMI also takes the 'document probability' into account
- Note that 'document' does not have to be a document, any definition of 'context' may result in useful representations (depending on the task)

A document is more than a BoW

The example document for sentiment analysis

It's a good thing most animated sci-fi movies come from Japan, because "titan a.e." is proof that Hollywood doesn't have a clue how to do it. I don't know what this film is supposed to be about.

- So far, we considered documents as simple BoW words
- BoW representations is surprisingly successful in many fields (IR, spam detection, ...)
- However, word order matters
 - According to a sentiment dictionary, our example contains one positive and one negative word

A document is more than a BoW

The example document for sentiment analysis

It's a good thing most animated sci-fi movies come from Japan, because "titan a.e." is proof that Hollywood doesn't have a clue how to do it. I don't know what this film is supposed to be about.

- So far, we considered documents as simple BoW words
- BoW representations is surprisingly successful in many fields (IR, spam detection, ...)
- However, word order matters
 - According to a sentiment dictionary, our example contains one positive and one negative word
- Paying attention to longer sequences allows us to get better results

Bag of n-grams

- Using n-grams rather than words allows us to capture more information in the data
- We can still use the same weighting methods (tf-idf)
- It is a common practice to use a range of (overlapping) n-grams
- This results in large set of features (millions for most practical applications)
- Data sparsity is a problem for higher order n-grams

The unreasonable effectiveness of character n-grams

An example document	
It's a good thing	

- For a number of text classification tasks (authorship attribution, language detection), character n-gram features found to be effective
- The idea is to use a range of character n-grams

feature	value
it	2
t'	1
's	2
s_{\sqcup}	3
⊔a	4
\mathtt{a}_{\sqcup}	5
⊔g	2
it's⊔	2
t's⊔a	1
's⊔a⊔	1
$s_{\sqcup}a_{\sqcup}g$	1
⊔a⊔go	2
a⊔goo	2

- Rows of the matrix represent words: words that appear in the same set of documents will be similar to each other
- The columns represent documents: documents with overlapping sets of words will be similar to each other
- Terms do not have to be words, any sequence we can count can be a term
- Contexts do not have to be documents, and any meaningful context can be used instead of documents
- Data is highly correlated (lots of redundancy)
- For practical applications we need huge (but sparse) matrices

A toy example

A four-sentence corpus with bag of words (BOW) model.

The corpus:

S1: She likes cats and dogs

S2: He likes dogs and cats

S3: She likes books

S4: He reads books

Term-document (sentence) matrix

		(/
	S1	S2	S3	S4
she	1	0	1	0
he	0	1	0	1
likes	1	1	1	0
reads	0	0	0	1
cats	1	1	0	0
dogs	1	1	0	0
books	0	0	1	1
and	1	1	0	0

A toy example

A four-sentence corpus with bag of words (BOW) model.

The corpus:

S1: She likes cats and dogs

S2: He likes dogs and cats

S3: She likes books

S4: He reads books

Term-term (left-context) matrix

			,						
	#	sh_{e}	h_{e}	likes	read_S	cats	g_{ogs}	$book_S$	pup
she	2	0	0	0	0	0	0	0	0
he	2	0	0	0	0	0	0	0	0
likes	0	2	1	0	0	0	0	0	0
reads	0	0	1	0	0	0	0	0	0
cats	0	0	0	1	0	0	0	0	1
dogs	0	0	0	1	0	0	0	0	1
books	0	0	0	1	1	0	0	0	0
and	0	0	0	0	0	1	1	0	0

What about the linguistic features?

- Linguistically-informed representations is one potential area where linguistics can help building NLP system
- For text classification, the use of 'lexicons' has been common
- Other linguistic features such as
 - lemmas
 - sequences of POS tags
 - parser output: dependency triplets, or partial trees

are also used in some tasks

A simple example from phonetics/phonology

	Vowel	High	Back	Round	Voice	Labial	Nasal	
i	1	1	0	0	1	0	0	
α	1	0	1	0	1	0	0	
n	0	0	0	0	1	0	1	
m	0	0	0	0	1	1	0	
p	0	0	0	0	0	0	0	
b	0	0	0	0	1	0	0	

• Compared to one-hot representations, these type of representations help identifying similar units

Are linguistic features useful at all?

- It is often difficult to get improvements over simple features
- It also makes systems more complex and language dependent
- Linguistic features can particularly be useful if the amount of data is limited
- They are particularly interesting for interpretable and explainable ML/NLP
- Considering the types of linguistics features that help is useful for structuring your input

Final remarks

- Representation of inputs to a ML model is important
- More meaningful/useful representations are likely to improve the systems
- Modern ML methods learn these representations from the data
- Informed/clever ways to represent the data may still be important in some cases (e.g., low-resource scenarios)

Final remarks

- Representation of inputs to a ML model is important
- More meaningful/useful representations are likely to improve the systems
- Modern ML methods learn these representations from the data
- Informed/clever ways to represent the data may still be important in some cases (e.g., low-resource scenarios)

Next:

Fri/Mon Learning representations

Some sources of information

• Jurafsky and Martin (Chapter 6, 2025)

Jurafsky, Daniel and James H. Martin (2025). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition with Language Models. 3rd. Online manuscript released January 12, 2025. URL: https://web.stanford.edu/~jurafsky/slp3/.