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+ Almost all machine learning methods require a fixed number of numeric
predictors

Gagn Galtekin « In most NLP task, our predictors are sequences of (categorical) units:

ceoltekindsts. uni-tuebingen. do Ieﬁﬂ:/phﬂm‘ms:, words, sentences, documents
the success of the
Universty of Tebingr. o s

Semias s Sprschisenschatt.
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Basics: how to represent categorical predictors? Categorical predictors

« For categorical variables most common choice is the
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Some notes on tf-idf

« t-idf s an effective method for term weighting
«Itwas trieval,

igi

improvements over other methods.
« Itis also very effective on text classification when using linear models
(e8., BM25), and

. variations: frequencies
for T, or use the log TF
« Ithas been difficult to improve aver it since 1970's)

Pointwise mutual information
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PMI(t,d) = lo

« Besides normalizing for ‘term frequency/probability’, PMI also takes the
“document probability” into account

« Note that ‘document’ does not have to be a document, any definition of
“context' may result in useful representations (depending on the task)

A document is more than a BoW

A document is more than a BoW

(The example document for sentiment iy
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+ So far, we considered documents as simple BoW words

« BoW representations is surprisingly successful in many fields (IR, spam
detection,

« However, word order matters

+ Sofar, we considered documents as simple BoW words

« BOW representations is surprisingly successful in many fields (IR, spam
detection, ..)

« However, word order matters
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Bag of n-grams.

The unreasonable effectiveness of character n-grams
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A toy example
Afoursentence corpus with bag o words (BOW) madel

‘Term-document (sentence) matrix

Rows of
documents will be similar to each other

- The s
words will be similar to each other

« Terms do not have to be words, any sequence we can count can be a term
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used instead of documents
« Data is highly correlated (lots of redundancy
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she 1 0 1 0
S1: She likes cats and doge he 0 1 0 1
52: He likes doge and cate Bkes 1 1 1 0
53: She likes books reads 0 0 0 1
54: He roads books as 1 1 0 0
dogs 1 1 0 0
books 0 0 1 1
and 1 1 0 0

« For practical applications we need huge (but sparse) matrices

A toy example

A four-sentence corpus with bag of words (BOW) model.
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What about the linguistic features?

+ Linguistically-informed representations is one potential area where linguistics

s 7 can help buiding NLP system
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A simple example from phonetics/phonology Are linguistic features useful at all?
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Final remarks

« Representation of inputs to a ML model is important
« More likely to imp
« Modern ML methods learn these representations from the data

+ Informed /clever ways to represent the data may still be important in some
cases (e.8, low-resource scenarios)
Next:
Fri/Mon Learning representations

Some sources of information

« Jurafsky and Martin (Chapter 6, 2025)
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https://web.stanford.edu/~jurafsky/slp3/
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