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Regression

+ In ML, regression refers to a problem where outcome variable is a number
(numeric quantity, continuous random variable)

6 tinear. lved using,

least squares optimization

« We will eview solving the linear regression problem from different
iewpoints

Linear regression
s et s ot ing
linear modelofthe for

ymwixewo
where,
+ yisa numeric quantity we want to
predict
 xis  measurement/value elpful
for prdictng .

+ wy and wy are the parameters that
we want to learn from data

« both x and y can be vector valued

Estimating regression parameters

w
« We view learning as ascarch for the .
regression equation with least error ,
« The error terms are also called L
residuals %
« We want error to be low for the x

whole training set: average (or sum)
of the error has to be reduced
+ Can we minimize the sum of the

Y=ot wing ey

errors?
=yi—wotwixg
D,

S

A simple example

I lesst squaresregresson, we want o find wo and i valuesthat minimize - w)
Ew) = 3 (yi— (wo +wini))? DG
: + Squared errors
= (w12t w212
« Note that E(w) is a guadratic function of w = (wo, w1 ) Eais 1 P <HBED=2]
« Asa result, E(w) is convex and have a single extreme value =20w* 16w +5
 there s a unique solution fo our mininizatio problem  Setting the derivative o zero
+ In case of Ieast squares regression, thee is an analytic soluton
+ Even f we do not have an analytic solution, i the error function Is conves, L w—t6-0sw-E "
n . 11 find the gobal rd 3 0

Regression with multiple variables

« The example generalizes to more parameters

+ The solution is where the gradient is 0
« This leads to a system of linear equations, whose solution vector is the best
parameters

Maximum Likelihood Estimation (MLE)

+ In MLE the task is to find the model m that assigns the maximunm likelifood to
the observed data x

+ To emphasize that likelihood is a function of model parameters, w, we
indicate it as £ (w;x)
« Formally the task s finding

WL = arg max £ (w;x)

« In most cases, working with log likelihood is easier, since log is a
‘monotonically increasing function,

Wi = arg maxlog £(w;X) = argmin — log £ (w;x)

imple regression

o= w0 b
where ¢~ X(0,0)
+ We additionally assume that o s
independent of x
« This means y ~ N(wo +wix,0)
+ Now the likelihood function
becomes,

[ —
P

MLE for simple regression (2)

1 ¢ 2
Log likelihood:  —nInovZ - 35 ;w. — (wo+wixi))
+ Note that maximizing log likelihood s equivalent to minimizing

3 (i~ (wo + wixi))?

« This s the squared error (the same as what we did before)

+ MLE estimate o the regression parameters is equivalent to east-squares
W o regression

Approximate solutions to

tems of linear equations

HIEEH

+ Can we solve the equation above?
« Can we find the ‘best approximation?
+ Reminder: finding the solution means

{13

Picture of the (non)solution

+ In higher dimensional spaces we
want the projection onto the column
space of X

+ The error vector ¢ is perpendicular
to all column vectors of X,

« Again, note that e = y — p

o y




Deriving linear regression on higher dimensions

XT(y —p) =0 Error vector is orthogonal to columns
XT(y~Xw) =0 pis the weighted combination of columns
XTXw=X"y Note: X"X is square
w=(X"X)"'X"y The final solution

The projection of y onto columns space of X is

P =X(X"X)"'X"y

Pseudo inverse
+ We want matrix multiplication to get as close to I as possible. Consider the
3 4 diagonal marix:

v o 0 1000
C e feeey [pies
o 0 o X380 =loo0o
o o o o 0 00 0

« Foran n x n diagonal matrix £, £+ = £~
« For any invertible n x n matrix X, X* = X!
(SVD) provides

x+=vzu’

Regression through pseudo inverse

+ Pseudo inverse is another method to find the regression parameters
- We want
Xw =y
but there is no general solution. Multiplying both sides with the pseudo
inverse resulls in the best approximation

X Xw X'y

« This also allows regression with ‘wide’ matrices, in which case we get lowest
L2-norm solution

Final remarks

« Regression is probably the most popular method for all (scientific) research
+ Many statistical methods are variations /extensions of regression
« Regression is also part of almost any ML method
Next:
+ Recap: classification / evaluation

Some sources of information

« Any modern linear algebra book (e.g., Strang, 2009) would cover regression
« For a more ML-focused introductions, also see James et al. (2024) or any.
machine learning textbool

Bl James, Gareth, Daniela Witten, Trevor Hastie, Robert Tibshirani, and
Jonathan Taylor (2024). An ntroduction to statistca earing. Springer.
FIS0107 - htpa: /v, statlesrning. con/
B Strang, Gilbert (2009). Introduction fo Linear Algebra, Fourth Edtion. 411



https://www.statlearning.com/
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