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Linear Algebra Derivatives Probability / Information theory Wrapping up

Linear algebra
Linear algebra is the field of mathematics that studies vectors and matrices.

• A vector is an ordered sequence of numbers

v = (6, 17)

• A matrix is a rectangular arrangement of numbers

A =

[
2 1

1 4

]
• A well-known application of linear algebra is solving a set of linear equations

2x1 + x2 = 6

x1 + 4x2 = 17
⇐⇒ [

2 1

1 4

]
×

[
x1
x2

]
=

[
6

17

]
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Linear Algebra Derivatives Probability / Information theory Wrapping up

Vectors
• Vectors are objects with a magnitude and a

direction
• We represent vectors with an ordered list of

numbers v = (v1, v2, . . . vn)
• The number n (the number of elements or

entries of the vector) is its dimension
• We often call an n dimensional vector as n-vector
• The vector of n real numbers is said to be in Rn

(v ∈ Rn)
• Typical notation for vectors:

v = v⃗ = (v1, v2, v3) = ⟨v1, v2, v3⟩ =

v1v2
v3



dir
ect
ion

ma
gn
itu
de
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Multiplying a vector with a scalar

• For a vector v = (v1, v2) and a scalar
a,

av = (av1,av2)

• multiplying with a scalar ‘scales’ the
vector

• We can use the notation a1 for a
vector whose all entries are a

2v

v = (1, 2)

−0.5v
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Vector addition and subtraction

For vectors v = (v1, v2) and u = (w1,w2)

• v+ u = (v1 +w1, v2 +w2)

(1, 2) + (2, 1) = (3, 3)

• v− u = v+ (−u)

(1, 2) − (2, 1) = (−1, 1)

• For any vector v, v+ 0 = v

v

u

v+ u

−u

v− u

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 4 / 67



Linear Algebra Derivatives Probability / Information theory Wrapping up

Properties of vector operations

• Vector addition and scalar multiplication is commutative

u+ v = v+ u

au = ua

• Scalar multiplication and vector addition also show the following distributive
properties

a(u+ v) = au+ av

(a+ b)v = av+ bv
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Dot (inner) product

• Dot product is an operation between two vectors with same dimensions

u · v = u1v1 + u2v2 + . . . + unvn

• Calculate the dot products for the following vectors

[
4

3

]
·
[
3

4

] [
4

−3

]
·
[
−3

4

] 12
3

 ·

−2

−4

−6

 12
3

 ·

24
6



1

0

0

0

 ·


0

1

0

0


• Note that dot product is larger when the vectors are ‘similar’
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Properties of dot product

• Commutativity u · v = v · u
• Distributivity with vector addition u · (v+ v) = u · v+ u · u
• Associativity with scalar multiplication (au) · (bv) = ab(u · v).
• Note that dot product is not associative, since the result of the dot product is

not a vector, but a scalar
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Dot product with unit vectors

v
u

u · v = 1

v

u

u · v = 0.7

v

u

u · v = 0

v

u

u · v = −0.7

v
u

u · v = −1

• The dot product is larger if the vectors point to the similar directions
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L2 norm

• Euclidean norm, or L2 (or L2) norm
is the most commonly used norm

• For v = (v1, v2, . . . vn),

∥v∥2 =
√

v21 + v22 + . . . vn
=

√
v · v

• For example,

∥(3, 3)∥2 =
√

32 + 32 =
√
18

• L2 norm is the default, we often skip
the subscript ∥v∥

y

x

(3, 3)
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Euclidean distance

• Euclidean distance between two
vectors is the L2 norm of their
difference

D(u, v) = ∥u− v∥ =
√
(−6)2 + (−1)2

• Euclidean distance is a metric
– symmetric ∥v− u∥ = ∥u− v∥
– non-negative
– and obeys the triangle inequality

D(u, v) ⩽ D(u,w) +D(w, v)
for any w

y

x

u

v
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Cosine similarity

• The cosine of the angle between two
vectors

cos θ =
v · u

∥v∥ · ∥u∥

is called cosine similarity
• Unlike dot product, the cosine

similarity is not sensitive to the
magnitudes of the vectors

• The cosine similarity is bounded in
range [−1,+1]

v

u
θ

∥v∥ cos θ
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L1 norm

• Another norm we will often
encounter is the L1 norm

∥v∥1 = |v1|+ |v2|

∥(3, 3)∥1 = |3|+ |3| = 6

• L1 norm is related to Manhattan
distance

y

x

(3, 3)
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Multiplying a matrix with a scalar

Similar to vectors, each element is multiplied by the scalar.

2

[
2 1

1 4

]
=

[
2× 2 2× 1

2× 1 2× 4

]
=

[
4 2

2 8

]
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Matrix addition and subtraction

Each element is added to (or subtracted from) the corresponding element[
2 1

1 4

]
+

[
0 1

1 0

]
=

[
2 2

2 4

]
Note:

• Matrix addition and subtraction are defined on matrices of the same
dimensions
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Transpose of a matrix

Transpose of a n×m matrix is an m×n matrix whose rows are the columns of the
original matrix.
Transpose of a matrix A is denoted with AT .

If A =

a b

c d

e f

, AT =

[
a c e

b d f

]
.
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Matrix–vector multiplication
• An n×m matrix can be multiplied with a m-vector to yield a n-vector

• Example [
2 1 0

1 0 1

]
×

01
0

 =

[
2× 0+ 1× 1+ 0× 1

1× 0+ 0× 1+ 1× 0

]
=

[
1

0

]
• One view of this operation: each entry in the resulting vector is a dot product

(of rows of the matrix and the vector)
• Another: the result is a linear combination of the columns of the matrix (with

the entries in the vector as coefficients)

0×
[
2

1

]
+ 1×

[
1

0

]
+ 0×

[
0

1

]
=

[
1

0

]
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Matrix multiplication transforms vectors

[
3 0

0 1

]
×

[
1

2

]
=

[
3

2

]

• Matrices define a linear operator or
function

• Linear transformations scale and/or
rotate/reflect a vector

(1, 2) (3, 2)
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Transformations by non-square matrices
• Multiplying a vector with (compatible) rectangular matrix results in a vector

with different dimensionality
• Example R3 → R2 [

2 1 0

1 0 1

]
×

01
0

 =

[
1

0

]
• Example R3 → R4 

2 1 0

1 0 1

0 2 0

1 1 1

×

01
0

 =


1

0

2

1


• Multiplying a vector with a matrix trasnforms it into the ‘column space’ of the

matrix
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Dot product as matrix multiplication
In machine learning (and many other disciplines), we treat an n-vector as an n× 1

matrix.
Then, the dot product of two vectors is

uTv

For example, u = (2, 2) and v = (2,−2),[
2 2

]
×

[
2

−2

]

= 2× 2+ 2× − 2 = 4− 4 = 0

• This is a 1× 1 matrix, but matrices and vectors with single entries are often
treated as scalars

Question: What is the transformation performed by dot product?
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Outer product

The outer product of two column vectors is defined as

vuT

[
1

2

]
×

[
1 2 3

]
=

[
1 2 3

2 4 6

]
Note:

• The result is a matrix
• The vectors do not have to be the same length
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Matrix multiplication

• if A is a n× k matrix, and B is a k×m matrix, their product C is a n×m

matrix
• Elements of C, ci,j, are defined as

cij =

k∑
ℓ=1

aiℓbℓj

• Note: ci,j is the dot product of the ith row of A and the jth column of B
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Matrix multiplication
(demonstration)

a11 a12 . . . a1k

a21 a22 . . . a2k

...
... . . . ...

an1 an2 . . . ank



 ×
b11 b12 . . . b1m

b21 b22 . . . b2m

...
... . . . ...

bk1 bk2 . . . bkm





c11 c12 . . . c1m
c21 c22 . . . c2m

...
... . . . ...

cn1 cn2 . . . cnm



=

c11 = a11b11 + a12b21 + . . .a1kbk1

c12 = a11b12 + a12b22 + . . .a1kbk2c1m = a11b1m + a12b2m + . . .a1kbkmc21 = a21b11 + a22b21 + . . .a2kbk1c22 = a21b12 + a22b22 + . . .a2kbk2c2m = a21b1m + a22b2m + . . .a2kbkmcn1 = an1b11 + an2b22 + . . .ankbk1cn2 = an1b12 + an2b22 + . . .ankbk2cnm = an1b1m + an2b2m + . . .ankbkmcij = ai1b1j + ai2b2j + . . .aikbkj
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... . . . ...

an1 an2 . . . ank



 ×
b11 b12 . . . b1m

b21 b22 . . . b2m

...
... . . . ...

bk1 bk2 . . . bkm





c11 c12 . . . c1m
c21 c22 . . . c2m

...
... . . . ...

cn1 cn2 . . . cnm



=

c11 = a11b11 + a12b21 + . . .a1kbk1c12 = a11b12 + a12b22 + . . .a1kbk2c1m = a11b1m + a12b2m + . . .a1kbkm

c21 = a21b11 + a22b21 + . . .a2kbk1

c22 = a21b12 + a22b22 + . . .a2kbk2c2m = a21b1m + a22b2m + . . .a2kbkmcn1 = an1b11 + an2b22 + . . .ankbk1cn2 = an1b12 + an2b22 + . . .ankbk2cnm = an1b1m + an2b2m + . . .ankbkmcij = ai1b1j + ai2b2j + . . .aikbkj
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Linear Algebra Derivatives Probability / Information theory Wrapping up

Alternative ways to think about matrix multiplication

If we have AB = C,
• Column vectors of C, cj = Abj

• Row vectors of C, cTi = aT
i B

• C is also the sum of outer product of columns of A and rows of B

C =
∑

aib
T
i
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Linear Algebra Derivatives Probability / Information theory Wrapping up

Properties of matrix multiplication
• Associativity

(AB)C = A(BC)

• Distributivity
A(B+C) = AB+AC

(A+ B)C = AC+ BC

• Multiplication by Identity
IA = AI = A

• Matrix multiplication is not commutative AB ̸= BA (in general)
• Matrix multiplication and transpose

(AB)T = BTAT
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Linear Algebra Derivatives Probability / Information theory Wrapping up

Row reduction and solving systmes of linear equations
x1 − x2 = −1

2x1 − x2 = 1
⇐⇒ [

1 −1

2 −1

] [
x1
x2

]
=

[
−1

1

]
• We apply a set of elementary row operations to the augmented matrix to obtain an
upper triangle matrix [

1 −1 −1

2 −1 1

]

• Elementary row operations are

– Multiply one of the rows with a non-zero scalar
– Add (or subtract) a multiple of one row from another
– Swap two rows
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Linear Algebra Derivatives Probability / Information theory Wrapping up

Solution with row reduction
[
1 −1 −1

2 −1 1

]

• Add −2× row 1 to row 2 [
1 −1 −1

0 1 3

]
• This corresponds to:

x1 − x2 = −1

x2 = 3

where we already see x2 = 3

• Back-substituting this in the first equation gives the same answer x1 = 2
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Linear Algebra Derivatives Probability / Information theory Wrapping up

Solving systems of linear equations
Geometric interpretation (1)

• The solution is the
intersection of the lines
defined by the equations −5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

x1
−
x2

=
−1

2x
1
−
x 2

=
1

x1

x2
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Linear Algebra Derivatives Probability / Information theory Wrapping up

Solving systems of linear equations
Geometric interpretation (2)

• The solution satisfies the
linear combination of the
column vectors

2

[
2

1

]
+ 3

[
−1

−1

]
=

[
1

−1

]

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 28 / 67



Linear Algebra Derivatives Probability / Information theory Wrapping up

Solving systems of linear equations
Geometric interpretation (2)

• The solution satisfies the
linear combination of the
column vectors

2

[
2

1

]
+ 3

[
−1

−1

]
=

[
1

−1

]

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 28 / 67



Linear Algebra Derivatives Probability / Information theory Wrapping up

Singular matrices and matrix rank

• If the elimination results in one or more rows with all zeros, the matrix is said
to be singular

• This means – effectively – we have fewer equations than unknowns
• If a square matrix is not singular, we can find a unique solution for any

right-hand side
• The systems of equations with a singular matrix results in either none or an

infinite number of solutions
• The number of columns (or rows) with a pivot is called the rank of the matrix
• A non-singular square matrix is said to be full-rank
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Linear Algebra Derivatives Probability / Information theory Wrapping up

Systems of equations with singular matrices

• What is the rank of the following matrix?

A =

[
1 2

2 4

]

• Can we solve Ax = b

– for b =

[
1

0

]
?

– for b =

[
3

6

]
?
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Linear Algebra Derivatives Probability / Information theory Wrapping up

Systems of equations with singular matrices
Demonstration of no solution

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

x
1 + 2x

2 = 1
2x

1 + 4x
2 = 0

[
1 2

2 4

] [
x1
x2

]
=

[
1

0

]
⇒ 2x1 + x2 = 1

4x1 + 2x2 = 0

• Lines are parallel to each other: no
intersection, no solution
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Linear Algebra Derivatives Probability / Information theory Wrapping up

Systems of equations with singular matrices
Demonstration of no solution (another view)

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

(1,2)

(2,4)

(1,0)

[
1 2

2 4

] [
x1
x2

]
=

[
1

0

]
⇒ x1

[
1

2

]
+ x2

[
2

4

]
=

[
1

0

]

• All linear combinations of[
1

2

]
and

[
2

4

]
bound to be on the

dotted line: no linear combination
can produce

[
1

0

]
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Linear Algebra Derivatives Probability / Information theory Wrapping up

Systems of equations with singular matrices
Demonstration of infinite number of solutions

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

x
1 + 2x

2 = 3
2x

1 + 4x
2 = 6

[
1 2

2 4

] [
x1
x2

]
=

[
3

6

]
⇒ 2x1 + x2 = 3

4x1 + 2x2 = 6

• Lines are identical: any point on the
line is a solution
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Linear Algebra Derivatives Probability / Information theory Wrapping up

Systems of equations with singular matrices
Demonstration of infinite number of solutions (another view)

−7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

(3,6)

(1,2)

(2,4)

[
1 2

2 4

] [
x1
x2

]
=

[
3

6

]
⇒ x1

[
1

2

]
+ x2

[
2

4

]
=

[
3

6

]

• There are many (x1, x2)
combinations that satisfy the

equation. An obvious one:
[
1

1

]
• More?
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Linear Algebra Derivatives Probability / Information theory Wrapping up

Matrix inverse
• If we have a single linear equation with a single unknown: ax = b, the

solution is
x =

1

a
b or x = a−1b

• We can use an analogous method with systems of linear equations

if Ax = b then, x = A−1b

• Matrix inverse is only defined for square matrices (and not all square matrices
are invertible)

• When it exists, A−1A = AA−1 = I

• If a square matrix is invertible, a version of elimination can be used to find the
inverse

– Create the augmented matrix [A|I]
– Use elementary row operations to obtain [I|B]
– If successful, B = A−1
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Linear Algebra Derivatives Probability / Information theory Wrapping up

Systems of equations with rectangular matrices
wide matrices (more columns than rows)

• This means n×m rectangular matrices with n < m,
• Note: the rank of such a matrix is always ⩽ n

• Exercise: solve [
4 2 4

2 2 3

] x1
x2
x3

 =

[
10

4

]

• In this case we have
– no solution if rank r < n (number of rows)
– infinitely many solution if rank r = n
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Linear Algebra Derivatives Probability / Information theory Wrapping up

Systems of equations with rectangular matrices
tall matrices (more rows than columns)

• This means n×m rectangular matrices with m < n,
• Note: the rank of such a matrix is always ⩽ m

• Exercise: solve  4 2

2 2

4 3

[
x1
x2

]
=

 10

4

4



• In this case we have
– a unique solution if the right-hand side is in the column space of the matrix
– no solution otherwise

• We will work with this case more often
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Determinant

• The determinant of a square matrix is a number that provides a lot of
information about the matrix

– Whether the matrix has an inverse or not
– Calculating eigenvalues and eigenvectors
– Solving systems of linear equations
– Determining the (signed) ‘change of volume’ caused by the linear

transformation defined by the matrix
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Determinant
example geometric interpretation (1)

• A =

[
0 −1

1 0

]
• det(A) = ?

−4 −2 2 4

−4

−2

2

4

a

b c

d

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 39 / 67



Linear Algebra Derivatives Probability / Information theory Wrapping up

Determinant
example geometric interpretation (1)

• A =

[
0 −1

1 0

]
• det(A) = ?

−4 −2 2 4

−4

−2

2

4

a

b c

dab

c d

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 39 / 67



Linear Algebra Derivatives Probability / Information theory Wrapping up

Determinant
example geometric interpretation (2)

• A =

[
0 −1

2 0

]
• det(A) = ?

−4 −2 2 4

−4

−2

2

4

a

b c

d
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Determinant
example geometric interpretation (3)

• A =

[
−2 0

0 1

]
• det(A) = ?

−4 −2 2 4

−4

−2

2

4

a

b c

d
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Determinant
example geometric interpretation (3)

• A =

[
cos 120
sin 120

]
×

[
cos 120 sin 120

]
=

[
0.25 −0.43
−0.43 0.75

]
• det(A) = ?

−4 −2 2 4

−4

−2

2

4

a

b c

d
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−4 −2 2 4

−4

−2

2

4

a

b c

d
a

b
c

d

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 42 / 67



Linear Algebra Derivatives Probability / Information theory Wrapping up

Eigenvalues and eigenvectors

• We can view any linear transformation as a combination of scaling and
rotation (and reflection)

• The linear transformation defined by a matrix does not change the directions
of some vectors, vectors in these directions are called the eigenvectors

• The scaling factor in these directions is called eigenvalues
• More formally, if v is an eigenvector of A with corresponding eigenvalue λ,

Av = λv

• Independent eigenvectors of a symmetric are orthogonal
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Eigenvalues and eigenvectors
visualization

−3 −2 −1 1 2 3

−2

2
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Diagonalization
(eigenvalue decomposition)

• An n× n with n independent eigenvalues can be diagonalized using
eigenvalues and eigenvectors

• We take the matrix S whose columns are the eigenvalues of A, and the
diagonal matrix Λ with eigenvalues of A, then

AS = SΛ

A = SΛS−1

S−1AS = Λ
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Matrix powers and matrix inverse
• Matrix powers can be easily calculated with diagonalization

Ax = λx

AAx = λAx

A2x = λ2x

• In general,
A2 = SΛS−1SΛS−1

= SΛ2S−1

Ak = SΛkS−1

• Inverse is also easy to obtain after eigendecomposition

A−1 = SΛ−1S−1
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Singular Value Decomposition

• Singular value decomposition (SVD) of an n×m matrix X is

X = UΣVT

U is a n× n orthogonal matrix
Σ is a n×m diagonal matrix of singular values

VT is a m×m orthogonal matrix.
• Singular vectors in U are the eigenvalues of XXT

• Singular vectors in VT are the eigenvalues of XTX
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Singular Value Decomposition

σ1 . . .
σr

=

× ×

X U Σ VT

• Since n− r rows and m− r rows of Σ is 0, the decomposition does need the
full matrices
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Low rank estimation of a matrix

σ1 . . .
σr

=

× ×

X U Σ VT

Xk Uk Σk VT
k

Xk = UkΣkV
T
k is the best rank k estimation of matrix X
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Derivatives

• Derivative of a function f(x) is another function f ′(x) indicating the rate of
change in f(x)

• Alternatively: f ′(x) = df
dx

(x)

• When derivative exists, it determines the tangent line to the function at a
given point

• Example from physics: velocity is the derivative of the position
• Our main interest:

– the points where the derivative is 0.00 are the stationary points (maxima,
minima, inflection points)

– the derivative evaluated at other points indicate the direction and steepness of
the curve defined by the function
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Example: derivatives

• f ′(x) is negative when f(x) is
decreasing, positive when it is
increasing

• The absolute value of f ′(x) indicates
how fast f(x) changes when x

changes
• f ′(x) = 0 when at a stationary point
• f ′(a) is a (good) approximation to

the f(x) near the a

f(x) = x2 − 2x

f ′(1) = 0

f ′(3) = 4f ′(3) = 4

f ′(−0.5) = −3

f ′(1.5) = 1
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Derivatives and extrema

• Derivative of a function is 0 at
minimum, maximum and inflection
points

• Derivative is useful for optimization
(minimization of maximization)
problems

• We need additional tests to
determine the type of critical points

−2 −1 1 2

−4

−3

−2

−1

1

2

3

4

f
(x

)

f ′(x) = 0
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Partial derivatives and gradient
• In ML, we are often interested in (error) functions of many variables
• A partial derivative is derivative of a multivariate function with respect to a

single variable, noted ∂f
∂x

• A very useful quantity, called gradient, is the vector of partial derivatives with
respect to each variable

∇f(x1, . . . , xn) =
(

∂f

∂x1
, . . . , ∂f

∂xn

)
• Gradient points to the direction of the steepest change
• Example: if f(x,y) = x3 + yx

∇f(x,y) =
(
3x2 + y, x

)
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Gradient visualization
Function:

X

Gradients:
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Probability mass function
Example: probabilities for sentence length in words

• Probability mass function (PMF) of a discrete random variable (X) maps every
possible (x) value to its probability (P(X = x)).

1
0.0

0.1

0.2

2
0.0

0.1

0.2

3
0.0

0.1

0.2

4
0.0

0.1

0.2

5
0.0

0.1

0.2

6
0.0

0.1

0.2

7
0.0

0.1

0.2

8
0.0

0.1

0.2

9
0.0

0.1

0.2

10
0.0

0.1

0.2

11
0.0

0.1

0.2

x P(X = x)

1 0.155
2 0.185
3 0.210
4 0.194
5 0.102
6 0.066
7 0.039
8 0.023
9 0.012
10 0.005
11 0.004
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Probability density function (PDF)

• Continuous variables have
probability density functions

• p(x) is not a probability (note the
notation: we use lowercase p for
PDF)

• Area under p(x) sums to 1.00
• P(X = x) = 0

• Non zero probabilities are possible
for ranges:

P(a ⩽ x ⩽ b) =

∫b
a

p(x)dx

0 1 2
0

0.5

1

a b
x

p(x)
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Joint and marginal probability
Two or more random variables form a joint probability distribution.

An example with letter bigrams:

a b c d e f g h
a 0.04 0.02 0.02 0.03 0.05 0.01 0.02 0.06 0.23
b 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.04
c 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.05
d 0.02 0.00 0.00 0.01 0.02 0.00 0.01 0.02 0.08
e 0.06 0.02 0.01 0.03 0.08 0.01 0.01 0.07 0.29
f 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.02
g 0.01 0.00 0.00 0.01 0.02 0.00 0.01 0.02 0.07
h 0.08 0.00 0.00 0.01 0.10 0.00 0.01 0.02 0.22

0.23 0.04 0.05 0.08 0.29 0.02 0.07 0.22
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Self information / surprisal

Self information (or surprisal) associated with an event x is

I(x) = log 1

P(x)
= − log P(x)

• If the event is certain, the information (or surprise) associated with it is 0.00
• Low probability (surprising) events have higher information content
• Base of the log determines the unit of information
2.00 bits

e nats
10.00 dit, ban, hartley
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Entropy

Entropy is a measure of the uncertainty of a random variable:

H(X) = −
∑
x

P(x) log P(x)

• Entropy is the lower bound on the best average code length, given the
distribution P that generates the data

• Entropy is average surprisal: H(X) = E[− log P(x)]
• It generalizes to continuous distributions as well (replace sum with integral)

Entropy is about a distribution, while surprisal is about individual events
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Pointwise mutual information

Pointwise mutual information (PMI) between two events is defined as

PMI(x,y) = log2
P(x,y)
P(x)P(y)

• Reminder: P(x,y) = P(x)P(y) if two events are independent

PMI
0 if the events are independent
+ if events cooccur more than they would occur by chance
− if events cooccur less than they would occur by chance

• Pointwise mutual information is symmetric PMI(X, Y) = PMI(Y,X)
• PMI is often used as a measure of association (e.g., between words) in

computational/corpus linguistics
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Mutual information

Mutual information measures mutual dependence between two random variables

MI(X, Y) =
∑
x

∑
y

P(x,y) log2
P(x,y)
P(x)P(y)

• MI is the average (expected value of) PMI
• PMI is defined on events, MI is defined on distributions
• Note the similarity with the covariance (or correlation)
• Unlike correlation, mutual information is

– also defined for discrete variables
– also sensitive the non-linear dependence
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Conditional entropy

Conditional entropy is the entropy of a random variable conditioned on another
random variable.

H(X | Y) =
∑
y∈Y

P(y)H(X | Y = y)

= −
∑

x∈X,y∈Y

P(x,y) log P(x | y)

• H(X | Y) = H(X) if random variables are independent
• Conditional entropy is lower if random variables are dependent
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Entropy, mutual information and conditional entropy

H(X)

H(Y)
H(X | Y)

H(Y | X)

MI(X, Y)

H(X, Y)
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Cross entropy

Cross entropy measures entropy of a distribution P, under another distribution Q.

H(P,Q) = −
∑
x

P(x) logQ(x)

• It often arises in the context of approximation:
– if we approximate the true distribution P with Q

• It is always larger than H(P): it is the (non-optimum) average code-length of
P coded using Q

• It is a common error function in ML for categorical distributions

Note: the notation H(X, Y) is also used for joint entropy.
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Perplexity

Perplexity is the exponential version of (cross) entropy:

PP(X) = 2H(X)

• Perplexity ‘undoes’ the logarithimic scaling
• Perplexity easier to interpret in some contexts
• Especially for language models, its interpretation is the average ‘branching

factor’

Predict the next word:

⟨S⟩ The perplexity of a random variable ⟨/S⟩
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KL-divergence / relative entropy

For two distribution P and Q with same support, Kullback–Leibler divergence of
Q from P (or relative entropy of P given Q) is defined as

DKL(P∥Q) =
∑
x

P(x) log2
P(x)

Q(x)

• DKL measures the amount of extra bits needed when Q is used instead of P
• DKL(P∥Q) = H(P,Q) −H(P)

• Used for measuring the difference between two distributions
• Note: it is not symmetric (not a distance measure)
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Final remarks

• The knowledge most if these topics are assumed, and important for
understanding modern methods in ML

• For math (and also for programming), it is difficult to master the concepts
with passive participation. You need to practice

Next:
• Recap: regression
• Recap: classification
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Some sources of information

On Linear algebra:
• A classic reference book in the field is Strang (2009)
• Alsto video lectures from the author:

https://www.youtube.com/playlist?list=PL0-GT3co4r2y2YErbmuJw2L5tW4Ew2O5B

• A nice video series by 3Blue1Brown (also some calculus):
https://www.youtube.com/playlist?list=
PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr

• Shifrin and Adams (2011) and Farin and Hansford (2014) are textbooks with
a more practical/graphical orientation.

• Cherney, Denton, and Waldron (2013) and Beezer (2014) are two textbooks
that are freely available.
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Some sources of information (cont.)
On probability theory:

• Please read, and follow the exercises in Goldwater (2018)
• See Grinstead and Snell (2012) a more conventional introduction to

probability theory. This book is also freely available
• For an influential, but not quite conventional approach, see Jaynes (2007)

For information theory:
• MacKay (2003): a freely available textbook with further topics in ML, also

includes probability theory,
• Shannon (1948)

In general for math:
• Many open books on math:

https://www.openculture.com/free-math-textbooks
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Some sources of information (cont.)
Beezer, Robert A. (2014). A First Course in Linear Algebra. version 3.40.
Congruent Press. ISBN: 9780984417551. URL: http://linear.ups.edu/.
Cherney, David, Tom Denton, and Andrew Waldron (2013). Linear algebra.
math.ucdavis.edu. URL: https://www.math.ucdavis.edu/~linear/.
Farin, Gerald E. and Dianne Hansford (2014). Practical linear algebra: a geometry
toolbox. Third edition. CRC Press. ISBN: 978-1-4665-7958-3.
Goldwater, Sharon (2018). Basic probability theory. URL: https://homepages.
inf.ed.ac.uk/sgwater/teaching/general/probability.%20pdf.
Grinstead, Charles Miller and James Laurie Snell (2012). Introduction to
probability. American Mathematical Society. ISBN: 9780821894149. URL:
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/
probability_book/book.html.
Jaynes, Edwin T (2007). Probability Theory: The Logic of Science. Ed. by
G. Larry Bretthorst. Cambridge University Press. ISBN: 978-05-2159-271-0.
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Some sources of information (cont.)

MacKay, David J. C. (2003). Information Theory, Inference and Learning
Algorithms. Cambridge University Press. ISBN: 978-05-2164-298-9. URL:
http://www.inference.phy.cam.ac.uk/itprnn/book.html.
Shannon, Claude E. (1948). “A mathematical theory of communication”. In:
Bell Systems Technical Journal 27, pp. 379–423, 623–656.
Shifrin, Theodore and Malcolm R Adams (2011). Linear Algebra. A Geometric
Approach. 2nd. W. H. Freeman. ISBN: 978-1-4292-1521-3.
Strang, Gilbert (2009). Introduction to Linear Algebra, Fourth Edition. 4th ed.
Wellesley Cambridge Press. ISBN: 9780980232714.
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