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Linear algebra

Linear algebra is the field of mathematics that studies vectors and matrices.
+ A vector is an ordered sequence of numbers

v=(617)
« Amatrixis a rectangular arrangement of numbers
2 1
[
+ A well-known application of linear algebra i solving a st of linear equations

A R IR

2+ x o= 6
X+ 4o = 17

Vectors

+ Vectors are objects with a magnitude and a
direction

+ We represent vectors with an ordered list of
Rumbers v = (v1,v2,.-.vn)

« The number . (the number of elements or
entries of the vector) isits dimension

+ We often call an n dimensional vector as n-vector

« The vector of n real numbers s said to be in ™
eR®

+ Typical notation for vectors:

-

va.vs)

Multiplying a vector with a scalar

+ Fora vector v = (v,v2) and a scalar
av = (avi, av2)
« multiplying with a scalar ‘scales’ the
vector
« We can use the notation a1 for a
vector whose all entries are o

Vector addition and subtraction

For vectors

(v1,v2) and u = (i, wz)
evus (v e bw)

Properties of vector operations

o and s pl
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eveu=vi(-u) . vector lso show the
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Dot (inner) product Properties of dot product
O .
V=V UV n « Commutativity u-v=v-u
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« Note that dot product is larger when the vectors are similar’

Dot product with unit vectors

L2 norm

+ Buclidean norm, or L2 (or L) norm
s the most commonly used norm y

« The dot product s larger if the vectors point to the similar directions

« Forv= vz, va),
3.3
Ivl2 = ¥+ +.va
« For example,

VI3

L2 norm is the default, we often skip
the subseript [v]]

13,311

Euclidean distance Cosine similarity
+ Fuclidean distance betuveen two + The cosine ofthe angle between two
vectors i the L2 norm o their vectors
difierence y -
s o0 = U
Dlw,v) = Ju—v| = /(-6 +(-1)2 u Tll-Tral

+ Euclidean distance is a metric
= lu=vl
et e ity

D(u,v) < Dlu,w)
forany w

i called cosine similrity
« Unlike dot product, the cosine
x similarity s not sensitive to the
‘magnitudes of the vectors
« The cosine similarity is bounded in
range -1, +1
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L1 norm

+ Another norm we will often
encounter s the L1 norm

¥
Il = o+ o3
183,3)llh = Bl + 131 = |
+ L norm i related to Marihattan
distance

Multiplying a matrix with a scalar

Similar to vectors, each element is multplied by the scalar.

R W R

Matrix addition and subtraction

Each clement is added to (or subtracted from) the corresponding clement

[+ =6

Note
. defined the same
dimensions

Transpose of a matrix

‘Transpose of a1 x m matrix is an m 1 matrix whose rows are the columns of the
original matri

Transpose of a matrix A is denoted with A”.
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Matrix-vector multiplication

 An x m matrix can be multiplied with a m-vector to yield a n-vector

« Example
0]
21 0] ] _[exosrxisoxny
1o =[1xosox1+1x0/ = o
of
« One view of this operation: each entry in the resulting vector is a dot product

(of rows of the matrix and the vecto

« Another: the resultis a linear combination of the columns of the matrix (with
the entries in the vector as coeffcients)

ox [l < o -]

Matrix multiplication transforms vectors
30 _[3
o 1] [2] = 2]
a2 (.2
.

- Matrices define a linear operator o
function

.U
rotate/reflect a vector

Transformations by non-square matrices

« Multiplying a vector with (compatible) rectangular matrix results in a vector
with different dimensionality

« Example B — B2

« Example B — R'
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Du« product as matrix multiplication
rchine ez (i many ot o), e et an et s a1
Then,the dot prodict o o vectors s
For example, u =

@2andv=(2,-2),

=2x242x -2

- Thisisalx1
treated as scalars

Vectors e

Question: What s the transformation performed by dot product?

Outer product Matrix multiplication
The outer prodic of two column vectors is deined as
. « i Aisan x k matri, and B s k x m matri,their product C isan x
At ‘matrix
+ Elements of , , are defined as
1 123
Hx[‘ 2 ;]:[2 g s]
=) auby
Note: “
« The result is a matrix + Note: ¢ is the dot product of the i row of A and the j* column of B
+ The vectors do not have to be the same length
Matrix multiplication Alternative ways to think about matrix multiplication
(demonstation)
an an o b b b
I IV T
+ Column vectorsof €, ¢, ~ Ab
ant Gz ank bur i e b + Row vectors of C, €] = alB
S S- gp + Cisalsothe sum of outer product of columns of A and rows of B
oY anl
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Properties of matrix multiplication

sociativity
(ABIC = A(BC)

« Distributivity
A(B+C) = AB+AC

(A+B)C=AC+BC
« Multiplication by Identity

Al=A
+ Matrix multiplication is not commutative AB # BA (in general)

« Matrix multiplication and transpose

Row reduction and solving systmes of linear equations
1) ] [
_ b IE)=[0]
+ Weapply peraions s obtain an
upper tringle matrix
1o
2
+ Hlementary row operations are
iply one of the ows with a oo salar

~ Muld
~ Add (or subtract) a multple of one row from another
~ Swap two rows

(AB)T = BTAT
Solution with row reduction Solving systems of linear equations
Geometricmrpretation (1)
1 <9[0
2
+ Add -2 xrow 1 torow?2
(715
I « The solution is the
+ This coresponds to Intersection of the lines
| defined by the cquations
where we already see xa = 3
o . he
Solving systems of linear equations Singular matrices and matrix rank
Geometric mrpretation (2)
 Ithe climination results in one or more rows with al zeros, the matrix i said
‘o be sigular
+ This means - effectively — we have fewer equations than unknowns
+ The solution satisfes the Irasq oo i v any
Jinear combination of the Tight pand side
CITmEE « The sy equations with a none or an
1 infinite number ofsolutions
+ The number of columas (or rows) with a pivot s called the rank of the matrix
+ Anon-singulr square matrix s sid tobe full-rank

Systems of equations with singular matrices

 Whatis the rank of the following matrix?

Systems of equations with singular matrices

Demonstratian of o soluton

b kI]-6)
‘an we s ve]:( % i+ 2 o
Sl :
—forb= Ha + Lines are parallel to each other: no
6] intersection, no solution

tems of equatior

Demonstration of no soluton (

s with singular matrices

Systems of equations with singular matrices
Demonsirationof nfinite number of solutons

>“?x N 1 2] [ % 3
- am[2]-]2 ks oA G AR]-(E]
: s ]wm ][] Rt BIMNE
. AI= linear T
2| d 4 bound tobe on the « Lines are identical: any point on the
dotted line: no linear combination : line is a solution:
ot -

Systems of equations with singular matrices
Demonstration of nfinite number of slutons (ather view)

zwm AlR]-[E
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Matrix inverse
« Tfwe have a single linear equation with a single unknown: ax = b, the.
solution is

x=1b or x=a""b

« We can use an analogous method with systems of linear equations

it b then,
. st 5q
are invertible)
« When it exists, A~'A = AA~! =1
« Ifasq version tofind the
inverse
- Create the augmented matrix [AII]
- Use clementary row operations to obtain (18]
~ Ifsuccessful, B= A"




Systems of equations with rectangular matrices

« This means n x m rectangular matrices with n < m,
« Note: the rank of such a matrix is always < n

1[3]-10)

- nosoluton frankr < 1 (number of rows)
infinitely many solution if rank

« Exercise: solve

424
223

Systems of equations with rectangular matrices

thm <n,

« This means n x m rectangular matrices
« Note: the rank of such a matrix is always < m

« In this case we have
the matrix

- no solution otherwise.
« We will work with this case more often

Determinant Determinant
example geometic nerpretation (1)
o is lotof
information about the matrix
- Whether the malix has an inverse oot
~ Calculating igenvalues and cigenvectors Al
~ Solving systems of linear equations. . 10
~ Determining the (signed) change of volume’ caused by thelinear
ransormation deined by the matrx
Determinant Determinant
example eometrc intrpretaton (2) example geometic nterpretaton (3)
o -1 2 o]
.A,[l 0] .A,[ﬂ ,]
+ det(A) =7 « det(A) =
Determinant Eigenvalues and eigenvectors

example geometric ntrpretation (3)

« We can view any linear transformation as a combination of scaling and

rotation (and reflection)

are called the eigenvectors

. bya
of some vectors, vectors in these directior

o120 B
o= [*m uo] x[eos120 sin120] .
05 o043 : N o
“oa3 075
 detia) =7 Avo
Eigenvalues and eigenvectors Diagonalization
+ Anm x n with m independent egensalues can be diagonlized sing
cigenvalues and eigenvectors
s Avand the
" clagonal matrx A with eigenvaluesof A, then
AS=sA
A-sas
sAs=A
Matrix powers and matrix inverse Singular Value Decomposition
+ Mat canbe casly
Ax=xx « Singular value decompositon (SVID) of an  x m matex X s
x-usv'
« Ingenera, R U s athogoral matex
AP=SAS 'SAS £ ican  m dagone mat ofsingular values
o V7 i m onpogonal matrc
st « Singalar vectors in U are th efgenvalues of XX"
« Singularvectors in V7 arethecigenvalues of X"
 nerse s also sy toobtan afte egendecomposition B
A




Singular Value Decomposition

Low rank estimation of a matrix

I . ﬂ . | | \M
x u H v
« Since . — T rows and m — r rows of Z is 0, the decomposition does nced the x u 3 vr
full matrices Xi = UiEw V] is the best rank k estimation of matrix X
Derivatives Example: derivatives
« Derivative of a function f(x) is another function f'(x) indicating the rate of
change n f(x) « [x) s negative when f(x) is
« Alternatively: #/(x) = 4£(x) decreasing, positive when itis
+ Wh increasing
given point « The absolute value of f'(x) indicates
« Example from physics: velocit is the derivative of the position how fast (x) changes when x
+ Our main interest. changes
~ thep « #x) = 0 when ata stationary point
minima, nflecton points) « a) is a (300d) approximation to
= the f(x) near the @
the curve defned by the function
Derivatives and extrema Partial derivatives and gradient
. = + In ML we arc often interested in (error) functions of many variables
e « Apartial
+ Derivative of a function is 0 at o Y single variable, noted &
‘minimum, maximum and inflection « A very useful quantity, called gradient, is with
points . respect o each variable
o ptimization & @
(minimization of maximization) 3 : itsrexe) = (k)
problems J =
+ We need additional tests to + Gradient points to the dircction of the stecpest change
determine the type of critical points. « Example: i (x,y) = x* + yx
Vixy) = (3 +y.x)
Gradient visualization Probability mass function
Example: probabiltes or sentence length n words
Function: Gradients: N @ () maps every
< possible (x) value to its probability (P(X = x)).
SR ~ Px=v
SRR . .
K2 =
N4 T o
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Probability density function (PDF) Joint and marginal probability
forma
+ Continuous variables have
probability density fuctions An example with letter bigrams:
+ plx) s not a probability (note the P o o I B
e a| 00 002 002 003 005 001 002 006 023
1 b| 001 000 000 000 001 000 000 001 | 004
o LSBTl c| o2 oo 000 000 o001 000 000 001 005
. PX=x) =0 05 a| oz 000 00 001 o002 000 001 002 008
+ Non zero probabilites are possible N e| 006 002 001 003 008 001 001 007 029
for ranges: - £| 000 000 0 000 001 000 000 001 | 002
. ® o i a g| 001 000 0 001 o002 000 oot 002 007
p,ngxgb,:J' plx)dx h| 008 000 000 001 010 000 001 002] 022
. 023 001 005 008 029 002 007 02
Self information / surprisal Entropy
. - Entropy is a measure of the uncertainty of a random variable:
1 HIX) =~ 3 Plx) logP(x)
SO — L
« Entropy s the lower bound on the best average code length, given the
« Ifthe event i certain, the information (or surprise) associated with t i 0.00 distribution P that generates the data
- Lowpr P + Entropy s average surprisal: H(X) = E[~log P(x)]
. y:;n;":hn log determines the unit of information « It generalizes to continuous distributions as well (replace sum with integral)
9D Entropy events
1000 ditban, hartley .




Pointwise mutual information Mutual information
formation (PMI) between defined two random variables.
Plx. -
PAIC )~ logy s MIXY) =3 3 Pl L)

PRPly)

« Reminder: P(x,y) = P(xJP(y) if two events are independent PMI
0 ifthe events e independent

fevents cooceur more than they would oceur by « PMIis defined on events, MI i defined on distributions

evet concen e o ey would ey e

« Mls the average (expected value of) PMI

« Note the similarity with the covariance (or correlation)

« Pointwise mutual information is symmetric PMI(X, ¥) = PMI(Y,X) « Unlike correlation, mutual information is
« PMIis often used as a meastre of association (e.5., between words) in - also defined for discrete variables
Comprtaliomal fcoepus linguiatica - also sensitve the non-linear dependence

Conditional entropy Entropy, mutual information and conditional entropy
Conditenal gy he gy of a o vl conloned on ncter
random variabl -y
; (v/X)
HIXIY) = 3 PyIHIX|Y =y)
MI(X,Y)
— ) PlxylogPlx|y)
ey e i
« HIX|Y] = H(X) if random variables are independent
+ Conditional i HIXY)
Cross entropy Perplexity
Cross entropy a distribution P, Q Perplexity is the exponential version of (cross) entropy:
HIP.Q) =~} P(x)log Q(x) PR(X) = 2M1X)
T w—— « Perplexity ‘undoes’ the logarithimic scaling
. ifwe approximate thetrue disebution P with Q « Perplexity easier o inerpret in some contexts
« 1tis always larger than H{P: iti the (non-op z  Espealy for language model, i iterpretaton the average ‘branching
P coded using Q factor’
ol ML for Predict the next word: (S} The perplexity of a random variable (/S)
Note:the notaton H(X, ) i also used for ot entropy.
KL-divergence / relative entropy Final remarks
For twodirution Pand Q withsame supprt Kullbck Leiblrdivergence of
Q from P (or relative entropy of P given Q) is defined a . e
P understanding modern methods in ML
D (PIQ) = ; PO o2 g + For math (and also for programming), itis difficult to master the concepts.
with passive participation. You need to practice

« Dy measures the amount of extra bits needed when Q is used Instead of P Ne*‘h
« Dua(PIQ) = H(P,Q) — H(P) * Reaps egremion
« Used for measuring the difference between two distributions O NTACIIEID

« Note: itis not symmeric (not a distance measure)

Some sources of information

of information (cont.)

On Linear algebra: On probability theory:
A classic reference book in the fild is Strang (2009) + Please read, and follow the exercises in Goldwater (2018)
d Snell (2012) troduction to

R e R e " probabilty lhsory ‘This book is also freely available.

« For an influential, but not quite conventional approach, see Jaynes (2007)

« A nice video series by 3Blue1Brown (also some calculus):

htepa: //wau.youtube. con/playlistlist= For information theory:

PLZHQOLONTQDHrOK- JS3DRVRHYO3ESYr « MacKay (2003): a freely available textbook with further topics in ML, also
« Shifrin and Adams (2011) and Farin and Hansford (2014) are textbooks with includes probability theory,

amore practical graphical orientation. « Shannon (1948)
+ Cherney, Denton, and Waldron (2013) and Beezer (2014) are two textbooks In general for math:

thatare frcly available + Many open books on math

bttps://uus.openculture. con/free-math-textbooks

Some sources of information (cont.) Some sources of information (cont.)

[ Beezer, Robert A. (2014). Ale Course in. mev/ﬂerbm version 3.40,
Congruent Pres. s 978098417551, usc htp://1inear . ups .edu/.

B Cherney, David, Tom mmm\ and l\ndm\\'V\aldmn (2013). mem(gcm B MacKay, David J. C. (2003), lvlﬁ)rmanml mm, Inference and Leaing
mathucdavis.edu. Uk hetpa:/ /v, math. ucdavis. edu/-1 Algoritims. Cambridge Uiversity Press. sow: 78-05-2164-298.9.

B Farin, Gerald E. and [ (2014, Pt e gt e e e
fole. Thid et CKC Press, sow: 978-1.466¢ B Shanon, Clude E (1949, mamzmnml theryof commnication”. In

Jdwater, Sharon (2015). Basic heory. s w27, pp. 3794

inf..ad.ac. uk/sguater/teaching/general /probability. 120pat. Theodore and Malolm 1 Adams (2011 Linear Aleba, A Gaometrc
B Grinstead, Charles Miller and James Laurie Snell (2012). Introduction to Approach. 2nd. . H. Freeman, sex: 978-14292-1521-3
probabilty, American Mathematical Society. sax: 9780821894149, U 1 Stang, Glber (09, oo Lin A, Furh Eon. 4
g/ darmoh i/ -chnce/enching. s ook ticlos/ Wellsley Cambridge Press. su: 9780980232
probability_book/boo
B e Eae T (007 Prbabilty Theony T Lgicof St . by
G Larry Bretthorst, Cambridge University Press. isu:



https://www.youtube.com/playlist?list=PL0-GT3co4r2y2YErbmuJw2L5tW4Ew2O5B
https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr
https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr
https://www.openculture.com/free-math-textbooks
http://linear.ups.edu/
https://www.math.ucdavis.edu/~linear/
https://homepages.inf.ed.ac.uk/sgwater/teaching/general/probability.%20pdf
https://homepages.inf.ed.ac.uk/sgwater/teaching/general/probability.%20pdf
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
http://www.inference.phy.cam.ac.uk/itprnn/book.html
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