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Classification methods Evaluation Wrapping up

Classification

• Given a training set with
(categorical)
labels/outcome

• Train a model to predict
future data points from the
same distribution
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Classification methods Evaluation Wrapping up

The perceptron
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f(x) =

{
+1 if

∑n
i wixi > 0

−1 otherwise

Note the similarity with linear regression: the separation between the (predicted)
classes is a linear line/surface.
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Classification methods Evaluation Wrapping up

Learning with perceptron

• We do not update the parameters if classification is correct
• For misclassified examples, we try to minimize

E(w) = −
∑
i

wxiyi

where i ranges over all misclassified examples
• Perceptron algorithm updates the weights for misclassified examples

w← w− η∇E(w)

w← w+ ηxiyi

• Perceptron algorithm converges if the classes are linearly separable
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Classification methods Evaluation Wrapping up

Logistic regression
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• Logistic regression is probabilistic,
we estimate p = P(y = 1|x)

• Note that typical regression would
penalize correctly classified
examples

• Instead we fit a regression model for
logit(p) = wTx+ b

• The probability estimate is the
inverse of logit, the logistic (sigmoid)
function

p =
1

1+ e−wTx
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Classification methods Evaluation Wrapping up

Another example with two predictors
Probability assignments are non-linear, but the discriminant function is linear
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Classification methods Evaluation Wrapping up

Fitting a logistic regression model

p =
1

1+ e−wx

The likelihood of the training set is,

L(w) =
∏
i

pyi(1− p)1−yi

In practice, we maximize log likelihood,
or minimize ‘− log likelihood’:

− logL(w) = −
∑
i

yi log p+ (1− yi) log(1− p)

• The derivative/gradient is easy (a
good exercise)

• There is no analytic solution for
∇− logL(w) = 0

• But the loss function is convex: we
can find the global minimum with
gradient descent (most of the time)
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Classification methods Evaluation Wrapping up

Naive Bayes

• Naive Bayes is another probabilistic classification method
• In any classification task, our aim is to find

ŷ = arg max
y

P(y | x)

• Sometimes (with some simplifying assumptions) it is easier to predict P(x | y)

• Then we use Bayes’ formula to invert the conditional proability

ŷ = arg max
y

P(x | y)P(y)

P(x)
= arg max

y
P(x | y)P(y)

• P(x | y) and P(y) are generally estimated using MLE (with smoothing)
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Classification methods Evaluation Wrapping up

Maximum-margin methods (e.g., SVMs)
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• In perceptron, we stop whenever we
found a linear discriminator

• Maximum-margin classifiers seek a
discriminator that maximizes the margin

• SVMs have other interesting properties,
and they have been one of the best
‘out-of-the-box’ classifiers for many
problems
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Classification methods Evaluation Wrapping up

Decision trees
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• Note that the decision boundary is
non-linear
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Classification methods Evaluation Wrapping up

Instance/memory based methods
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• No training: just memorize the instances
• During test time, decide based on the k

nearest neighbors
• Like decision trees, kNN is non-linear
• It can also be used for regression
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Classification methods Evaluation Wrapping up

More than two classes

• Some algorithms can naturally be extended to handle multiple class labels
• Any binary classifier can be turned into a k-way classifier by
OvR one-vs-rest or one-vs-all

• train k classifiers: each learns to discriminate one of the classes from the others
• at prediction time the classifier with the highest confidence wins
• needs a confidence score from the base classifiers

OvO one-vs-one
• train k(k−1)

2
classifiers: each learns to discriminate a pair of classes

• decision is made by (weighted) majority vote
• works without need for confidence scores, but needs more classifiers
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Classification methods Evaluation Wrapping up

Measuring success in classification
Accuracy, precision, recall, F-score

accuracy =
TP + TN

TP + TN+ FP + FN

precision =
TP

TP + FP

recall = TP

TP + FN

F1-score =
2× precision× recall
precision+ recall

predicted
positive negative

pos. TP FN

neg. FP TNtr
ue

va
lu

e
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Classification methods Evaluation Wrapping up

Multi-class evaluation
• For multi-class problems, it is common to report average

precision/recall/f-score
• For C classes, averaging can be done two ways:

precisionM =

∑C
i

TPi

TPi+FPi

C
recallM =

∑C
i

TPi

TPi+FNi

C

precisionµ =

∑C
i TPi∑C

i TPi + FPi
recallµ =

∑C
i TPi∑C

i TPi + FNi

(M = macro, µ = micro)
• The averaging can also be useful for binary classification, if there is no natural

positive class
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Confusion matrix

• A confusion matrix is often useful for multi-class classification tasks

predicted
negative neutral positive

negative 10.00 2.00 0.00

neutral 3.00 12.00 7.00

positive 4.00 8.00 7.00tr
ue

va
lu

e

• Are the classes balanced?
• What is the accuracy?
• What is per-class, and averaged precision/recall?
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Classification methods Evaluation Wrapping up

Overfitting & Underfitting

We want our models to generalize, perform well on unseen data.

• Overfitting occurs when the model learns the idiosyncrasies of the training
data

• Underfitting occurs when the model is not flexible enough for solving the
problem at hand

We want simpler models, but not too simple for the task at hand.
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Bias and variance
Bias of an estimate is the difference between the value being estimated,

and the expected value of the estimate
B(ŵ) = E[ŵ] −w

• An unbiased estimator has 0.00 bias
Variance of an estimate is, simply its variance, the value of the squared

deviations from the mean estimate
var(ŵ) = E

[
(ŵ− E[ŵ])2

]
w is the parameter (vector) that defines the model

Bias–variance relationship is a trade-off:
models with low bias result in high variance.
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Classification methods Evaluation Wrapping up

ML evaluation in general

The first principle is that you must not fool yourself and you are the easiest person
to fool. – Richard P. Feynman

• We want models with low bias and low variance, but this is a trade-off
• Estimators/models with low/no bias overfit
• Estimators/models with high bias (may) underfit
• Evaluating ML system requires special care:

– Tuning your system on a development set
– Cross-validation allows efficient use of labeled data during tuning
– A test set is often used when comparing results obtained by different models

• In most cases, the scores are not meaningful by themselves, we need to
compare with baselines
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Final remarks

• Most NLP problems we try to solve are classification problems
• We reviewed some of the ‘traditional’ classification methods
• Understanding them will help understanding more ‘modern’ methods
• The models we review can serve as baselines for more complex models, and

sometimes their performance may surprise you

Next:
Mon Lab: numpy tutorial
Wed Representing linguistic data
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Some sources of information

• Any ML textbook covers most of the methods reviewed (and more), here are
a few: James et al. (2024), Bishop (2006), and MacKay (2003)

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning.
Springer. ISBN: 978-0387-31073-2.
James, Gareth, Daniela Witten, Trevor Hastie, Robert Tibshirani, and
Jonathan Taylor (2024). An introduction to statistical learning. Springer. ISBN:
9783031391897. URL: https://www.statlearning.com/.
MacKay, David J. C. (2003). Information Theory, Inference and Learning
Algorithms. Cambridge University Press. ISBN: 978-05-2164-298-9. URL:
http://www.inference.phy.cam.ac.uk/itprnn/book.html.
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