Recap: classification Statistical Methods in NLP 2 ISCL-BA-08

Cağrı Cöltekin ccoltekin@sfs.uni-tuebingen.de

Summer Semester 2025

- (categorical) labels/outcome
- Train a model to predict future data points from the

The perceptron $y = f\left(\sum_{i=1}^{n} w_i x_i\right)$

Logistic regression examples

classes is a linear line/surface.

- Logistic regression is probabilistic we estimate p = P(y = 1|x) Note that typical regression would penalize correctly classified
 - · Instead we fit a regression model for $logit(p) = \mathbf{w}^T\mathbf{x} + \mathbf{b}$
 - The probability estimate is the inverse of logit, the logistic (sigmoid) function

same distribution

0 0

6

Learning with perceptron

· We do not update the parameters if classification is co . For misclassified examples, we try to minimize $E(w) = -\sum wx_iy_i$

Perceptron algorithm updates the weights for misclassified examples

 $w \leftarrow w - n\nabla F(w)$

$$w \leftarrow w + \eta x_1 y_1$$

Perceptron algorithm converges if the classes are linearly separable

Another example with two predictors

Fitting a logistic regression model

 $\mathcal{L}(\mathbf{w}) = \prod p^{y_k} (1-p)^{1-y_k}$

$p = \frac{1}{1 + e^{-wx}}$. The derivative/gradient is easy (a good exercise) The likelihood of the training set is, . There is no analytic solution for

- $\nabla \log \mathcal{L}(\mathbf{w}) = 0$
- · But the loss function is convex: w can find the global minimum with gradient descent (most of the time)
- In practice, we maximize log likelihood, or minimize '- log likelihood': $-\log \mathcal{L}(\mathbf{w}) = -\sum y_t \log p + (1-y_t) \log (1-p)$

Naive Bayes

. In any classification task, our aim is to find $\hat{y} = \arg \max_{y} P(y \mid x)$ * Sometimes (with some simplifying assumptions) it is easier to predict $P(x\mid y)$

· Naire Bayes is another probabilistic classification method

* Then we use Bayes' formula to invert the conditional proability
$$\hat{y} = \underset{u}{\arg\max} \frac{P(x \mid y)P(y)}{P(x)} = \underset{u}{\arg\max} P(x \mid y)P(y)$$

*
$$\mathbb{P}(x\,|\,y)$$
 and $\mathbb{P}(y)$ are generally estimated using MLE (with smoothing)

Maximum-margin methods (e.g., SVMs)

- In perceptron, we stop when found a linear discriminator
 - · Maximum-margin classifiers seek a discriminator that maximizes the mar
 - SVMs have other interesting properties, and they have been one of the best 'out-of-the-box' classifiers for many problems

argin methods (e.g., SVMs)

- In perceptron, we stop when found a linear discriminator
- · Maximum-margin classifiers seek a discriminator that maximizes the margi-
- SVMs have other interesting properties,
- and they have been one of the best 'out-of-the-box' classifiers for many problems

Decision trees

Instance/memory based methods

- * No training: just memorize the instance During test time, decide based on the k nearest neighbors
- . Like decision trees, kNN is non-li · It can also be used for regression

Confederated Science Services	Contractor Made Service
More than two classes	Measuring success in classification Accuracy, precision, recal, F-score
Some algorithms can naturally be extended to handle multiple dass labels Any brany classifier can be turned into a levery dassifier by OUR cones-when of extensive all Extensive and the data decision in the data with the data of the d	$ \begin{aligned} & \text{accuracy} &= \frac{TP + TN}{TP + TN + FP + TN} \\ & & \text{precision} &= \frac{TP}{TP + FP} \\ & & \text{recall} &= \frac{TP}{TP + TN} \\ & & \text{good three negative} \\ & & \text{F}_{1} = \text{cocces} &= 2 \text{ precision s. recall} \\ & & \text{F}_{2} = \text{precision s. recall} \end{aligned} $
C Cilolin, 100 / Discrete of Tillingus Summer Street 200 11 / 30	C Cilibin, 181/Disonly of Stingen Survey States 12/11
Multi-class evaluation • For milli-class problems, It is common to report average procession; recullif-score procession; recullif-score procession; recullif-score reculling procession, as $\frac{\sum_{i=1}^{n}\frac{1}{1+i}}{\sum_{i=1}^{n}\frac{1}{1+i}}$ reculls $a = \frac{\sum_{i=1}^{n}\frac{1}{1+i}}{\sum_{i=1}^{n}\frac{1}{1+i}}$ procession, $a = \frac{\sum_{i=1}^{n}\frac{1}{1+i}}{\sum_{i=1}^{n}\frac{1}{1+i}}$ reculls $a = \frac{\sum_{i=1}^{n}\frac{1}{1+i}}{\sum_{i=1}^{n}\frac{1}{1+i}}$ (M. = maxis, $a = \min(a)$). The averaging on also be useful for binary classification, if there is no natural positive class.	Confusion matrix • A confusion matrix is often useful for multi-class classification tasks producted produc
C. Cibrio, 189 / University of Tillingus Summer Summer Summer State 223 23 / 26	C-Collection, 500 / Deleverably of Stringers Summer Frencher 2023 11 / 18
Overfitting & Underfitting We want our models to generalize, perform well on unseen data.	Bias and variance Bias of an estimate is the difference between the value being estimated, and the expected value of the estimate $B(\hat{w}) = E(\hat{w}) = -W$
Corpliting occurs when the model learns the alliconyncrasies of the training data. Linderfitting occurs when the model is not flexible enough for solving the problem at hand.	* An unbiased estimator has 0.00 bias Various: of an estimate his, samply the variance, the value of the squared deviations from the mon estimate $var(\psi\rangle = \left[(\psi - E \psi)^2 \right]$ we is the parameter (vector) that define the model
We want simpler models, but not too simple for the task at hand. COMMon. NO. (Soundary of Trillage) Soundary Soundary of Trillage.	Bias-variance relationship is a trade-off: models with low bias result in high variance.
ML evaluation in general The first principle is that you must not fool yourself and you are the easiest person to fool. —Richard F. Feynman 1. We want models with how hiss and low vastance, but this is a trade-off Estimators; models with high beat sensity! Estimators; models with high hiss care principle of the state of the	Final remarks Most NLP problems we try to solve are classification problems We recisioned some of the 'traditional' classification methods Understanding them will help understanding more 'modern' methods The models we review can serve as baselines for more complex models, and sometimes their performance may surprise you Nice: Mon Labr numpy tutorial Wed Representing linguistic data
C. Cilobin, 1887, University of Edings. Susanni Research Institute (ISS) 277/28	C. Cliffelin, 18 Discovely of Tillings Season's Season's Season's SEA 18
Some sources of information • Any Mt. testbook covers most of the methods reviewed (and more), here are a love James et al. (2023), Biology (2006), and MacKoy (2000) Biology. Clerishper M. (2000). Patters Recognition and Mackine Learning. Systems are 400-4000-5 (1972). Biology. Clerishper M. (2000). Patters Recognition and Mackine Learning. Systems are 400-4000-5 (1972). Biology. Clerishper M. (2006). Patters Recognition and Mackine Learning. Systems are 500-4000-5 (1972). An articular to statistical learning. Systems are 500-4000-5 (1972). An articular to statistical learning could. **Systems Comparison of Comparison Compari	