
Neural language models
Statistical Methods in NLP 2

ISCL-BA-08

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Summer Semester 2025

version: 081de83+ @2025-07-16

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Language models

• Language models assign probabilities to sequences
• The probability of sequence is estimated based on probability of each item

(word) in the sequence
• Probability of each word in the sequence is predicted based on its context
• Language models can be trained with unlabeled text
• Language models have been traditionally an important part of some NLP

applications (translation, ASR)
• Recently, they are used for (almost) any NLP task

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 1 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

N-gram language models
• We use probabilities of parts of the sentence (words) to calculate the

probability of the whole sentence

P(w1, w2, . . . , wm) = P(w2 |w1)

× P(w3 |w1, w2)

× . . .

× P(wm |w1, w2, . . . wm−1)

• Making a conditional independence assumption, we can simplify the model

P(w1, w2, . . . , wm) = P(w2 |w1)

× P(w3 |w1)

× . . .

× P(wm |wm−1)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 2 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Issues with n-gram language models

• Words are symbolic units. No notion of word similarity
• Morphologically complex languages: different inflections of the word
• Difficult to capture long-range dependencies
• No information from the following words

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 3 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Feed-forward neural models

w−3 w−2 w−1

h

wi
• Main idea is the same as n-gram

models: predict the next word from
a limited context

• The first layer is typically
embeddings

• Continuous representations allow
modeling similarities

• We can include right context, too

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 4 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Short detour to word2vec
Is word2vec a language model?

w−2

w−1

w1

w2

w

context

embedding target word

CBOW

w

w−2

w−1

w1

w2

context

embeddingtarget word

Skip-gram

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 5 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

RNN language models

<s> x1 … xt−1 xt

h0 h1
… ht−1 ht

x1 x2 … xt </s> • RNNs can trivially be
trained as language models

• Hidden representations
provide contextual
embeddings

• Can potentially handle
long-range dependencies

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 6 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

A real-world RNN language model: ELMo

• ELMo is the first popular pre-trained language model providing contextualized
representations

• ELMo is simply a (stacked/deep) LSTM language model trained on a large
corpus (30 million sentences)

• Each layer in ELMo builds contextual representations for words
• ELMo is bidirectional: forward and backward representations are

concatenated
• Similar to static word embeddings, ELMo representations can be used for

downstream NLP tasks
• Note that unlike the word embeddings, the whole model needs to be

distributed

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 7 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Shortcomings of RNN language models

• RNNs solve many of the issues with n-gram (and feed-forward) language
models

• Although RNN language models can model dependencies across arbitrary
distances in theory, the memory is generally short even for gated RNNs

• RNN processing is inherently sequential to calculation of representations at
each step require all earlier steps to be done

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 8 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Back to Transformers: a recap

• The first layer is an embedding layer: no
information from context information

• Subsequent layers use attention followed by
a non-linear transformation (feed-forward
layer)

• Feed-forward layer is a projection an
up-projection followed by projection back to
input/output dimensions

• Input and output dimensions to each
Transformer block is the same

• Layer normalization is after (sometimes
before) the attention and feed-forward
calculations

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 9 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Transformer language models

• The decoder of the original
transformer is simply a
language model: it predicts the
next word based on earlier
words

• Encoder–decoder models can be
used as language models if
trained using autoencoder (or
similar) objectives

• Encoder side of the Transformer
can also be used as a language
model with masked language
model (MLM) objective

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 10 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Transformer language models

• The decoder of the original
transformer is simply a
language model: it predicts the
next word based on earlier
words

• Encoder–decoder models can be
used as language models if
trained using autoencoder (or
similar) objectives

• Encoder side of the Transformer
can also be used as a language
model with masked language
model (MLM) objective

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 10 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Transformer language models

• The decoder of the original
transformer is simply a
language model: it predicts the
next word based on earlier
words

• Encoder–decoder models can be
used as language models if
trained using autoencoder (or
similar) objectives

• Encoder side of the Transformer
can also be used as a language
model with masked language
model (MLM) objective

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 10 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Computational complexity of Transformers
• What is the computational complexity of Transformers in the sequence length
n?

– For each time step at each layer, we need to calculate attention over all previous
time steps

– This results in a O(n2) complexity at each layer

sequence length operations
1 1
2 4

10 100
512 262144

• We want our sequences to be short
• Also remember: we also want to keep vocabulary size short (to avoid

expensive softmax, among other problems)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 11 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Computational complexity of Transformers
• What is the computational complexity of Transformers in the sequence length
n?

– For each time step at each layer, we need to calculate attention over all previous
time steps

– This results in a O(n2) complexity at each layer

sequence length operations
1 1
2 4

10 100
512 262144

• We want our sequences to be short
• Also remember: we also want to keep vocabulary size short (to avoid

expensive softmax, among other problems)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 11 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Tokenization in language models

• Traditional tokenization (approximately words) produce very large
vocabularies

• One option is working with characters

– Not necessarily small Unicode has more than 150K, and growing
– Results in long sequences

• Typical solution for this in current language models is subword tokenization

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 12 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Tokenization in language models

• Traditional tokenization (approximately words) produce very large
vocabularies

• One option is working with characters
– Not necessarily small Unicode has more than 150K, and growing
– Results in long sequences

• Typical solution for this in current language models is subword tokenization

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 12 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Subword tokenization: BPE

• Byte-pair encoding (BPE) is an algorithm to segment a set of words into
sub-words

• The general idea is:
– Start with a vocabulary with bytes (or characters)
– Iteratively add most common pair to the vocabulary
– Stop when vocabulary size increases to a pre-defined number

• Many current models use a version of BPE algorithm for tokenization with
some alternations

• The vocabulary size differ. BERT: 30K, RoBERTa: 50K, XLM-R (large): 250K
LLama 3: 128K

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 13 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

BPE demonstration
Corpus

r e a d e r
r e a d s
r e a d e r s
w r i t e r s

lexicon
a d e i r s t w

Best merge(s)
merge freq
re 3
er 3
ea 3
ad 3

Corpus
re a d e r
re a d s
re a d e r s
w r i t e r s

lexicon
a d e i r s t w re

Best merge(s)
merge freq
rea 3
er 3

Corpus
rea d e r
rea d s
rea d e r s
w r i t e r s

lexicon
a d e i r s t w re rea

Best merge(s)
merge freq
rea 3
er 3

Corpus
rea d er
rea d s
rea d er s
w r i t er s

lexicon
a d e i r s t w re rea
er

Best merge(s)
merge freq
er 3

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 14 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Encoder only transformers: masked language models

• Masked language models replace some of the words in the input with a
special symbol [MASK]

• The task of the model is to predict the masked words
• The idea is similar to ‘fill in the blanks’ questions (cloze tests)
• It is also similar to ‘noisy’ autoencoding, but we do not reconstruct the full

sentence, but only the masked tokens
• In the process, the model learns contextual representations that are useful for

other NLP tasks

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 15 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

BERT: architecture

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 16 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

BERT: pretraining

• BERT uses two training objectives:
MLM masked language modeling
NSP next sentence prediction

• Input to BERT is pairs of sentences with [SEP] between them
• MLM typically predict the masked tokens, but some tokens are replaced with

arbitrary words
• NSP is a binary classification taks trying to predict whether the second

sentence follows the first one
• Later models (e.g., RoBERTa) typically drop the NSP objective

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 17 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

How to use encoder-only LMs in downstream applications?

• For downstream tasks, we typically finetune BERT with a supervised objective
• For sequence labeling task, we replace the NSP ‘head’ with a classification

layer
• For sequence labeling we attach a classifier to every step in the sequence
• The new ‘heads’ are typically randomly initialized
• Finetuning procedure updates all the weights (including the language model

weights trained during pretranining)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 18 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

A note on representations from BERT

• Embeddings produced by BERT-like models are ‘contextualized’: they assign
different representations for different senses of words

• Representations learned are more useful for downstream (classification) tasks
than static embeddings (e.g., word2vec)

• It is also often claimed that representations from different layers learn
different representations (with mixed results)

– Earlier layers learning morphology and syntax
– Later layers semantics, world knowledge

• BERT representations are anisotropic: distances and similarities are typically
not very meaningful

• Subword tokenization may also complicate obtaining representations for
words

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 19 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Encoder-only models: a few examples

• BERT: the first encoder-only language model
• RoBERTa: the same architecture, trained longer with more data, some

improvements to training procedure
• XLM-RoBERTa: multilingual version of RoBERTa supporting 100 languages
• ModernBERT: longer context, applying some of the lessons learned from

other architectures
• Monolingual models for many languages exist
• There are also domain-specific architectures, e.g., for legal or medical texts

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 20 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Encoder–decoder architectures

• The original transformer architecture without modification can also serve as
pretrained language models

• It is particularly suitable for generation tasks (machine translation,
summarization, questions answering)

• Encoder-decoder models can also be used for classification (and less
commonly regression) tasks: model is finetuned to produce class label, given
text input(s)

• This is a relatively less-common approach
• Well-known models include BART and T5

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 21 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Decoder-only models

• It is relatively trivial to train the decoder side of the Transformer as a language
model

• The attention mask is set up to attend only to preceding input: task becomes
next token prediction

• Most well-known large language models are decoder-only models, e.g., GPT
family, Llama, DeepSeek, …

• They are also known as causal LMs, or simply generative LMs
• These models are typically trained with much larger data, and tend to learn

much more about language (and the world)
• Modern LLMs are not only trained with language modeling objective, they go

through further training after LM pretraining

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 22 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

How to use generative models

• LLMs are next word predictors, using them do classification, or interact as
chat agents require some additional work

• By default, one can construct special ‘prompts’ to use LLMs for certain tasks
The sentiment of the sentence "Not worth the time" is

– We can either let the model predict the next word
– Or decide based on P(positive|context) and P(negative|context)

• Similar prompts can be built for other tasks
• More commonly, the LLMs go through additional training to interact with

people the way we expect them to

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 23 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Decoding from LLMs

• Decoding is the tasks of producing new tokens given the context:
– Start with the context (or prompt)
– Get the highest probability token given the context
– Add the token to the context, and repeat until we sample end-of-sequence

symbol
• Greedy decoding often leads to ‘boring’ text without much variation
• Instead we sample a random word, based on the softmax probabilities

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 24 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Sampling with temperature

• One way to encourage further diversity is temperature.
• Instead of sampling based on softmax(x), we use so softmax(x/T)
• T = 1 it is equal to normal sampling
• As T gets closer to 0, we approach greedy decoding: probability of most likely

word tends to 1
• With high values for T , probabilities become smoother, allowing sampling less

likely tokens

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 25 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Post-training in LLMs

• Pretrained LLMs are useful, but for their typical use they generally go
through a ‘post-training’

– Training on interactive prompts to adjust to typical human interaction, and
increase their task performance: typically with supervised methods

– Aligning with human preferences: typically through reinforcement learning

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 26 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Finetuning LLMs

• The LLMs are typically very big, finetuning them require substantial resources
• They are typically used through zero-shot or few-shot prompting (so-called

‘in-context learning’)
• When needed, parameter-efficient finetuning is more common

– Adapters: keep LM weights frozen, add new trainable parameters
– Prefix-tuning: only update some input parameters
– LoRA: Use low-rank approximation for parameter updates

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 27 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Some issues with LLMs

• LLMs tend to be bad with factuality, they tend to ‘hallucinate’
• LLM pretraining requires substantial amount of energy, raising

environmental concerns
• All language models tend learn the biases in the training set
• They may produce toxic, or offensive language
• They may introduce privacy and copyright violations

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 28 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Summary

• There are multiple neural architectures that can be used for language
modeling

• The state-of-the are architectures are based on Transformer, and can be:
– Encoder-only (e.g., BERT family)
– Decoder-only (e.g., GPT family)
– Encoder-decoder (e.g., T5)

• Reading: Jurafsky and Martin, 2025, Chapter 11

Next:
• More on Transformer language models
• Reading: Jurafsky and Martin, 2025, Chapter 10

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 29 / 29

Introduction Neural LMs Encoder only Encoder-decoder Decoder-only Summary

Summary

• There are multiple neural architectures that can be used for language
modeling

• The state-of-the are architectures are based on Transformer, and can be:
– Encoder-only (e.g., BERT family)
– Decoder-only (e.g., GPT family)
– Encoder-decoder (e.g., T5)

• Reading: Jurafsky and Martin, 2025, Chapter 11
Next:

• More on Transformer language models
• Reading: Jurafsky and Martin, 2025, Chapter 10

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 29 / 29

Additional reading, references, credits

Jurafsky, Daniel and James H. Martin (2025). Speech and Language Processing: An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition with Language Models. 3rd. Online manuscript released January 12, 2025. URL:
https://web.stanford.edu/~jurafsky/slp3/.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 A.1

https://web.stanford.edu/~jurafsky/slp3/

	Neural language models
	Introduction
	Language models
	N-gram language models
	Issues with n-gram language models
	Feed-forward neural models
	Short detour to word2vec

	Neural LMs
	RNN language models
	A real-world RNN language model: ELMo
	Shortcomings of RNN language models
	Back to Transformers: a recap
	Transformer language models
	Transformer language models
	Transformer language models
	Computational complexity of Transformers
	Computational complexity of Transformers
	Tokenization in language models
	Tokenization in language models
	Subword tokenization: BPE
	BPE demonstration

	Encoder only
	Encoder only transformers: masked language models
	BERT: architecture
	BERT: pretraining
	How to use encoder-only LMs in downstream applications?
	A note on representations from BERT
	Encoder-only models: a few examples

	Encoder-decoder
	Encoder–decoder architectures

	Decoder-only
	Decoder-only models
	How to use generative models
	Decoding from LLMs
	Sampling with temperature
	Post-training in LLMs
	Finetuning LLMs
	Some issues with LLMs

	Summary
	Summary
	Summary

	Appendix
	Additional reading, references, credits

