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Language models

+ Language models assign probabilitis to sequences

« The probabilty of sequence is estimated based on probability of each item
(word) in the sequence

+ Probability of each word in the sequence is predicted based on its context

+ Language models can be trined with unlabeled text

« La traditionally
applications (translation, ASK)

+ Recently,they are used for (almost) any NLP task

some NLP

N-gram language models
+ We use probabi

e lities of parts of
probability of the whole sentence
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+ Making a conditional independence assumption, we can simplify the madel
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Issues with n-gram language models

+ Words are symbolic units. No notion of word similarity
« Morphologically complex languages: different inflections of the word.
+ Diffiult to capture long-range dependencies

« No information from the following words

Feed-forward neural models

« Main idea is the same as n-gram
‘models: predict the next word from
a limited context

« The first layer s typically.
embeddings

+ Continuous representations allow.
‘modeling similarities

+ We can include right context, too.

Short detour to word2vec
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RNN language models

+ RNNs can trivially be
trained as language models

+ Hidden representations
provide contextual
embeddings

+ Can potentially handle
long-range depender

A real-world RNN language model: ELMo

- ELM

Mo popular pre-trained
representations

ya LST™ trained on a large
corpus (30 million sentences)

« Each layer in ELMo builds contextual representations for words

forward and backward

CEL
concatenated

. word embeddings, EL for
downstream NLP tasks

distributed

Shortcomings of RNN language models

 RNNs solve many of the issues with n-gram (and feed-forward) language
‘models

- Although RNN

distances in theory, the memory is generally short even for gated RNNs

< RNN dy sequential
each step require all arlier steps to be done.

Back to Transformers

« The frstlayer is an embedding laer: o
information from context information

« Subsequent laers use attention followed by,
anon-linear ransformation (feed-forward
layer)

« Feed:forward layer is a projection an
up-projection followed by projection back to
input/output dimensions.

« Inputand output dimensions to each
Transformer black s the same.

Layer normalization is after (sometimes
before) the attention and feed-forward
calculations

Transformer language models

« The decoder of the original
transformer is simpl
language model: i predicts the
next word based on earlier
words,

+ Encoder-decoder models can be
used as language models if
trained using autoencoder (or
similar) objectives

+ Encoder side of the Transformer

50 be used as a language

‘model with masked language

model (MLM) objective

Computational complexity of Transformers

+ Whatis the computational complexity of Transformers in the sequence length
n
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+ We want our sequences to be short
+ Also remember: we also want to keep vocabulary size short (to avoid
expensive softmax, among other problems)




Tokenization in language models

« Traditional tokenization (approximately words) produce very large

+ One option is working with characters

Subword tokenization: BPE

* Bytepat encoding (BPE) i analgoritn o segrmenta seof words o
sub-words
« The general idea is
~ Start with a vocabulary with bytes (or characters)
- leratvly add st commen palr o he vocbulary
Stop wi

R 150K, and increases to a pre-defined number
~ Results in long sequences o Many current mudd: use a version of BPE algorithm for tokenization with
° for tokeniztion e
+ The vocabulary size differ BERT: 30K, RoBERTa: 50K, XLM-R (large): 250K
LLama 3 125K
BPE demonstration Encoder only transformers: masked language models
S o o e
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wrivers wrivers wrivers wrivers « The task of the model is to predict the masked words
leicon lesicor leicon leicon « The idea s similar to fill in the blanks’ questions (cloze tests)
[acirom | foacirsiwre | fadeirsiwrens | [adeirsiwrena e O -
pest merees) pest mereels) pest mereels) Bt merges) sentence, but only the masked tokens
| merge ireq | merge ireq | merge ireq . < Inthe the model for
w3 w3 e freq other NLP tasks
- 3 - 3 w3
BERT: architecture BERT: pretraining
T \ « BERT uses wo training objectives:
D oem- @ MLM masked language modeling
NSP next sentence precliton
BERT  Input to BERT is pairs of sentences with [SE) between them
SIe). EIEIE + MM typically ok placed with
arbitrary words
NP1 iy dssfstion ks yin et whather e econd

T Pewnng Fine-Tuning

sentence follows the first o
+ Later models (e, mnm) typically drop the NSP objective

How to use encoder-only LMs in A note on representations from BERT
o g5 produced by 2 s they assign
different epresentations for ifferent senses of words
+ Fordowmstcam sk, wetypily e DERT i spervised e ) F— e -
« For labeling task, NSP head’ than sttic embeddings (e g, word2vec)
layer i leam
« For sequence labeling we attach a classifier to every step in the sequence different representations (with mixed results)
 The new ‘heads' are typiclly randornly niialized - Earler lyers eaming morphalogy and syntax
+ Finetuning procedure updates ll the weights (incuding the language model - Later layers semanics, word knowledge
weights trained during pretranining) » BERT on distances and similarities are typically
ot very meaningfl
. Subword tokenizat ¢
words
Encoder-only models: a few examples Encoder-decoder architectures
« BERT: the first encoder-only language model + The original s
+ RoBERT; the same architecure, trained Ionger with more data, some pretrained language models N
A asks

improvements to training procedure
 XLM-RoBERTa: multlingual mmnum)xsem supporing 100 Iar\guag>
« ModernBERT:

other architectures

+ Monolingual models for many languages exist
« There are also domain-specific architectures, e, for legal or medical texts

. &
summarization, questions answering)

. can also be used for cas (and less
commonly regression) tasks: model is finetuned to produce class label, given
textinput(s)

« This s a relatively less-common approach

+ Well-known models include BART and T5

Decoder-only models How to use generative models
o the language
model * LLMsare nestvord predictos,uing e do dssfcaton, ormract 5
o s chat agents require some additional w

next token prediction

+ Most well-known large language models are decoder-only models, e5, GPT
family, Liama, DeepSeck,

« They are also known as causal LMs, or simply generative LMs

« These models are typically trained with much larger data, and tend to learn

uch more about language (and the world)

« Modern LL with

through further training after LM pretraining

. they go

* By default one can consiuctspecal pmmpls o use LLV for certan tasks

sentinent of the sentence "Not vorth the time"
2 wecameter et oot predict the next word
+ Similar prompts can be bult for other tasks
traini

people the way we expect them to




Decoding from LLMs

« Decoding is the tasks of producing new tokens given the context:
~ Start withthe context or prompt)
Getth hghet probisy ke ghen he o
Rt ek 1 conten,anl et e sampleend-ofsquence
sy
+ Greedy decoding often leads to ‘boring’ ext without much variation
+ Instead we sample a random word, based on the softmax probabilities

Sampling with temperature

+ One way to encourage further diversity i tenperature.

o based on softmax(x), m

« T =1itis equal to normal sampling.

+ AsT gets closer to 0, we approach greedy decoding: probability of most likely
word tendsto 1

« With high values for T, probabilities become smoother, allowing sampling less
likely tokens

Post-training in LLMs

* Prtrained LLMs are usful,butfor thei ypicaluse they generlly g0
throughs postiraining’

increas theis sk perormance: ypcally withsupervsd e
= ypically thro

learning

Finetuning LLMs

« The LLM:

+ They are typiclly used through zero-shot or few-shot prompting (so-called
mcontexteaming)

- Wh er-<fficent fint

1g i more com
~ Adapters: keep LM weights frozen, add new trainable parameters
~ Prefix-tuning; only update some input

LoRA: Use low-rank approximation for parameter updates

ues with LLMs.

« LLMs tend to be bad with factuality, they tend to ‘hallucinate’
.UM

environmental concerns
« Al language models tend learn the biases in the training set
« They may produce toxic, o offensive language
« They may introduce privacy and copyright violations

Summary

« There are multiple neural architectures that can be used for language
modeling
« Th ch based on Transf d canbe:
~ Encoder-only (e.g, BERT family)
~ Decoder-only (e, GPT family)
Encoder-decoder (e.g, T5)

+ Reading: Jurafsky and Martin, 2025, Chapter 11

Next:

+ More on Transformer language models
+ Reading: Jurafsky and Martin, 2025, Chapter 10



https://web.stanford.edu/~jurafsky/slp3/
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