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The biological neuron Artificial and biological neural networks
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+ ANNS are inspired by biological neural networks
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Linear separability Can a linear classifier learn the XOR problem?

+ We can use non-linear basis functions
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+ Choosing proper basis functions like xx is called feature engincering
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Where do non-linearities come from? Multi-layer perceptron
s e et i e,  nk ey th XOR prolem
Ina linear model,y = wo + W) + ... + Wi  The simplest modern ANN architecture iscalled mult-ayer perceptron
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Multi-layer perceptron Artificial neurons
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Each unit takes a weighted sum of their input,

put,

and applies a (non-linear) actication function.
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Artificial neurons Activation functions in ANNs
an cxample pidden units
2= « The activation functions in MLP are typically continuous (differentiable)
A common activation function is functions
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Activation functions in ANNs MLP: a simple example

outputunits

« The activation functions of the output units depends on the task. Common
choices are
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- For regression, the identity function (y =x)
- For binary classification, logistic sigmoid
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~ For multi-class cassification, softmax.
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MLP: a simple example Solving non-linear problems with ANNs
2 solution 1 XOR problem
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Solving non-linear problems with ANNs Solving non-linear problems with ANNs

Solving non-linear problems with ANNs Solving non-linear problems with ANNs
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Non-linear activation functions are necessary Gradient descent: a refresher
Without non-linear activation functions, an ANN with any number of layers is . minimum of in small (or
equivalent t0.a linear model not 5o small) steps
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ANN objectives are not convex Error functions in ANN training
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« For binary classification, we use cross entropy
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+ Similarly, for multi-class classification, also cross entropy.
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In practice, the ANN loss functions will not be convex.

Learning in ANNs

.+ ANN: functions: we need thod:
(e, gradient descent) to train them
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« Optimization requires updating multiple layers of weights
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We want a way o (efctently) update non-final weights based on fnal error
Calculating gradient on a neural network Backpropagation
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Preventing overfitting in neural network How many layers, units

« Asin linear models, we can use L1 and L2 regularization by adding a
regularization term to the error function (known as weight decay). For

iy « A network with single hidden layer s said to be @ universal approviniator: it can
[ with P
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« There are other ways to fight overfitting.
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used in modern ANN models

+ The choice of layers, in general the architecture of the system, depends on the

hall application
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- With

training
- Injecting noise at the output, as a way o (implicitly) model the noise n the
target classes/values

Abit of history Summary
+ ANNs are powerful nonlinear learners
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1950-60 AN (perceptron) became popular:
of excitement in Al, cognitive science
19705 Not much interest
- crticsm on perceptron: linear separability

one hidden
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il ayer networks « In general, ANN loss functions are not convex, what we find is a local

19905 ANNs had again allen out of fashion’
« They (typically) are trained with backpropagation algorithm
scence persp « Reading: Jurafsky and Martin (2025, Chapter 7)
present. ANN (again) enjoy a renewed populariy with the name ‘deep learning’ o

+ Models for sequential data, reading; Jurafsky and Martin (2025, Chapter 17)




Additional reading, references, credits (cont.)

Additional reading, references, credits

« Hastie, Tibshirani, and Friedman (2009, Chapter. 11) also includes an
- [ ——

accessible introductio
For a review of use of ANNs in NLE, including more advanced topi

Goldberg, 2016
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