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Introduction Gradient descent Stochastic gradient descent Summary

Optimization and machine learning

• Most machine learning problems are optimization problems:
– define a model (a function) class (parametrized by a set of parameters w)
– define an objective (or loss, cost) function J(w)
– find the weights (model) that minimize the objective function

w∗ = arg max
w

J(w)

• If the objective function is continuous and differentiable we can use derivative
of the function to find the minimum

• If the loss function is convex, there is a single global minimum
• If we are lucky (e.g., as in regression), there is an analytic solution to J(w) = 0

• In most cases we use a search procedure to find the minimum
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Estimating regression parameters (again)
analytic solution

• Data: x =

[
4

2

]
y =

[
1

2

]
Model: ŷ = wx

• Squared errors

J(w) = (4w− 1)2 + (2w− 2)2

= 20w2 − 16w+ 5

• Setting the derivative to zero:

dJ

dw
= 40w− 16 = 0⇒ w =

2

5
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Gradient descent for parameter estimation

• In many ML problems, we do not have a closed form solution for finding the
minimum of the error function

• In these cases, we use a search strategy
• Gradient descent is a search method for finding a minimum of a (error)

function
• The general idea is to approach a minimum of the error function in small steps

w← w− η∇J(w)

∇J is the gradient of the loss function, it points to the direction of the maximum
increase

η is the learning rate or step size)
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Gradient descent with single parameter

• For a single parameter, gradient is a
one-dimensional vector

• The direction of gradient is towards
the maximum increase

• We take steps proportional to
−∇J(w)

• Steeper the curve, the larger the
parameter update

w

J(w)
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Gradient descent with two/more parameters
X

w1

w2

J(
w
)

Objective function

w2

w
1

Negative gradients

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2025 5 / 10



Introduction Gradient descent Stochastic gradient descent Summary

Gradient descent: demonstration

• J(w) = x2 + 1, J ′(w) =

2x

• Initialize w = −4, η = 0.25:
−0.25J ′(−4) =

2

• w = −4+ 2 = −2:
−0.25J ′(−2) = 1

• w = −2+ 1 = −1:
−0.25J ′(−1) = 0.5

• w = −1+ 0.5 = −0.5:
−0.25J ′(−0.5) = 0.25

• …when do we stop?

−4 −2 0 2 4
0

10

20

30

w

J(w)
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The importance of the learning rate

• Small learning rate causes slow
convergence

• Too large learning rate causes
ovrshooting

• It is common to adapt the learning
rate

−4 −2 0 2 4
0

10

20

30

w

J(w)
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Stochastic gradient descent

• Standard (batch) gradient descent is
computationally expensive: it updates
weight at every epoch

• Stochastic gradient descent (SGD) updates
weights for every training instance

• SGD may take more steps, but converges to
the same solution w2

w1

er
ro

r

• In practice a mini-batch is more common
• Correct batch size is an important hyperparameter for neural networks
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Adapting learning rate
• The choice of learning rate η is important

too small slow convergence
too big overshooting - may fluctuate around the minimum,

or even jump away
• The idea is to adapt the learning rate during learning
• A common trick is adding a momentum:

if we move in the same direction a long time accelerate

∆wij(t) = η
∂J

∂wij

+ α∆wij(t− 1)

• Other improvements include using a separate learning rate for each parameter
• There are many adaptive optimization algorithms:

Adagrad, Adadelta, RMSprop, Adam, …
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Summary

• Gradient descent is a general method for searching for the minima of a
function

• We often use a mini-batch gradient descent: weights are based on a small
number of training instances

• Reading: Jurafsky and Martin (2025, Section 5.6)

Next:
• Introduction to ANNs, Reading: Jurafsky and Martin (2025, Chapter 7)
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