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Recap: RNNs Encoder—decoder RNNs Attention Summary

Encoder—-decoder models

o All machine learning methods can be seen performing two tasks:

— encoding the input into a useful representation
— decoding the representation into the output

 In more traditional methods, encoding is ‘manual’, or external to the learning
algorithm

e Modern deep learning methods include the encoder: they learn to build
(multiple layers/hierarchies of) useful input representations
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Recap: RNNs Encoder-decoder RNNs Attention Summary

A simple encoder—decoder network

we can view any neural network as two parts
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A simple encoder—decoder network

we can view any neural network as two parts
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Uses of RNNs

Many-to-one (e.g., document classification)
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Uses of RNNs

One-to-many (e.g., caption generation)
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Uses of RNNs

Many-to-many (e.g., POS tagging, segmentation, ty recognition)
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Uses of RNNs

Many-to-many — language models

(a) () . (] (=)

<s> X1 Xt—1 Xt

C. Coltekin,  SfS / University of Tiibingen Summer Semester 2025 4/18



Recap: RNNs Encoder—decoder RNNs  Attention  Summary

Uses of RNNs

Many-to-many with a delay (e.g., machine translation, summarization, question answering, ...)
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Recap: RNNs Encoder—decoder RNNs — Attention  Summary

RNN problems, solutions, variations

(Unfolded) RNNs can be deep (based on the length of the input), this results
in

- exploding gradients — solution: gradient clipping

— vanishing gradients — solution: gated RNNs (to some extent)

o More generally, keeping relevant information over longer sequences are
difficult — solution: attention (this lecture)

« RNNSs condition the prediction in only one direction — solution: bidirectional
RNNs

o Itis also common to stack multiple layers of RNNs

« RNNs are inherently sequential, this prevents parallel processing
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Sequence-to-sequence RNNs (seq2seq)
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Sequence-to-sequence RNNs (seq2seq)
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« Note that the decoder is a RNN language model
« Both input and output can be arbitrary length

« All information about the input is coded in a single encoding vector
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Sequence-to-sequence RNNs (seq2seq)

a simple improvement
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Sequence-to-sequence RNNs (seq2seq)

a simple improvement
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« Instead of passing the encoder output (context vector) to the first decoder
state, pass it to all time steps

« Helps decoder to not to forget the encoder state, but early words in the
encoder may not be represented well in the context vector
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Recap: RNNs Encoder—decoder RNNs Attention Summary

Attention: the general idea

A naive solution could be passing all intermediate steps of the encoder to the
decoder states (e.g., concatenate or average)

However, in many problems, a part of the input is relevant for predicting the
current output

o A common solution to the problem is attention mechanism

Attention is about focusing into the relevant parts of the input

In sequence-to-sequence problems, this corresponds to alignment
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Sequence-to-sequence RNN with attention
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Recap: RNNs Encoder—decoder RNNs Attention Summary

Sequence-to-sequence RNN with attention

another variation
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Recap: RNNs Encoder—decoder RNNs Attention Summary

Calculating attention weights

o The context vector is the sum of the encoder states, weighted by attention, a; ;
Ci = Z i, €;
j

o Typically the weights are normalized through softmax the result is an attention

distribution
ef(di1,ej)

>k ef(dii,ex)

« The attention function, f(-) computes the relevance of encoder state e; to the
decoder state d;

aij =
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Some (common) attention functions

Dot product:
f(di, ;) = d{ e;
 Generalized dot product:
f(di, ej) = d{ Wqe;
e Scaled dot product:
die
vk

f(di, ej) =
o Additive attention:

f(di, ej) = v tanh(Wqd; + Ugqe;)
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Recap: RNNs Encoder—decoder RNNs Attention Summary

Hard and soft attention

o The mechanism we described is called soft attention: The attention mechanism
allows attending to more than one input in a weighted manner

o The case where the attention weights form a one-hot vector is called hard
attention

« Soft attention is common, both because of its flexibility and ease of training
(continuous / differentiable functions)
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Recap: RNNs Encoder—decoder RNNs Attention Summary

Attention and content addressable memory

o In the literature, attention mechanism is often explained as a form of
content-addressable (or associative) memory: decoder state is used to query
the encoder states

query key
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o In this setting, key and value are the same

ai,j =

e In case of hard attention, the mechanism is equivalent to associative arrays
(maps)
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Example attention weights

machine translation (en—fr)

agreement
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Recap: RNNs Encoder-decoder RNNs Attention Summary

Example attention weights

caption generation

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
— mountain in the background.

& e

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with

a teddy bear. in the water. trees in the background.
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Recap: RNNs Encoder-decoder RNNs Attention Summary

Example attention weights

caption generation

A Iarge white bird standing in a forest. A woman holding a clock in her hand. A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.
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Summary

Attention is a general mechanism to focus on certain parts of input

It is also useful for generating ‘explanations’

Attention is the basic mechanism behind the current state of the art models
(transformers)

Reading: Jurafsky and Martin (2025, Chapter 8)
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Summary

o Attention is a general mechanism to focus on certain parts of input
o Itis also useful for generating ‘explanations’

e Attention is the basic mechanism behind the current state of the art models
(transformers)

o Reading: Jurafsky and Martin (2025, Chapter 8)
Next:

o Self attention and transformers architecture (Reading: Jurafsky and Martin
(2025, Chapter 9))
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Additional reading, references, credits

o The translation example is from Bahdanau, Cho, and Bengio (2014)

o The image captioning examples are from Xu et al. (2015)
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Additional reading, references, credits (cont.)

@ Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural machine translation by jointly learning to align and translate”. In:
arXiv preprint arXiv:1409.0473.

ﬁ Jurafsky, Daniel and James H. Martin (2025). Speech and Language Processing: An Introduction to Natural Language Processing, Computational

Linguistics, and Speech Recognition with Language Models. 3rd. Online manuscript released January 12, 2025. urL:
https://web.stanford.edu/~jurafsky/slp3/.

@ Xu, Kelvin, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio (2015). “Show,
attend and tell: Neural image caption generation with visual attention”. In: International conference on machine learning. PMLR, pp. 2048-2057.
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