Encoder-decoder models
Sequence-to-sequence (encoder-decoder) networks
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+ All machine learning methods can be seen performing two tasks:

) ~ encoting the input into a usefulrepresentation
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+ In more traditional methods, encoding is ‘manual’, or external to the learning
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R SIS + Modern deep learning methods include the encoder: they learn to build
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A simple encoder—decoder network Recap: RNNs
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Uses of RNNs RNN problems, s variations

+ (Unfolded) RNNs can be deep (based on the length of the input), this results

- exploding gradients - solution: gradient clipping
~ vanishing gradients - solution: gated RNNs (to some extent)

. ) kecping over longer sequences are
difficult - solution: attention (this lecture)

+ RNN condition the prediction in bidirectional
RNNs

« Itis also common to stack multiple layers of RNNs

+ RNNs are inherently sequential, this prevents parallel processing

Sequence-to-sequence RNN's (seq2seq) Sequence-to-sequence RNNs (seq2seq)

a simple impravement
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Attention: the general idea Sequence-to-sequence RNN with attention
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« In sequence-to-sequence problems, this corresponds to alignment
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Sequence-to-sequence RNN with attention Calculating attention weights

anothe variation

« The context vector is the sum of the encoder states, weighted by attention, ay j
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+ The attention function, () computes the relevance of encoder state € o the
decoder sate d;
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Some (common) attention functions Hard and soft attention

+ Dot product
flay ey =ale,
+ Generalized dot product  The mechanism we described s called soft attention: The atention mechanism
allows atending o more than one input ina weighted manner
The case where the attenion weights form a one-hot vector s called Hard
atenton

flde) = aTWae,

« Scaled dot product:
+ Softattention is common, both because ofits lexibility and ease of training

a
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« Additive attention:
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Attention and content addr

able memory Example attention weights

« In theliterature, attention mechanism is often explained as a form of
content-addressable (or associative) memory: decoder state s used to query
the encoder states
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Example attention weights Example attention weights
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Summary Additional reading, references, credits

+ Attention is a general mechanism to focus on cerain parts o input
+ s also useful for generatng ‘explanations’
+ Attention isthe basc mechanism behind the current stte of the art models  The translation example i rom Bahdarau, Cho, and Bengio (2014)
(ransformers) e
T + The image captoning examples arefrom Xa et al. (2015)
Next

- Self attention and transformers architecture (Reading;: Jurafsky and Martin
(2025, Chapter 9))

Additional reading, references, credits (cont.)
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https://web.stanford.edu/~jurafsky/slp3/
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